Guide to Computer Forensics and Investigations Fourth Edition

Chapter 7
Current Computer Forensics
Tools

Objectives

- Explain how to evaluate needs for computer forensics tools
- Describe available computer forensics software tools
- List some considerations for computer forensics hardware tools
- Describe methods for validating and testing computer forensics tools

Evaluating Computer Forensics Tool Needs

- Look for versatility, flexibility, and robustness
 - OS
 - File system
 - Script capabilities
 - Automated features
 - Vendor's reputation
- Keep in mind what application files you will be analyzing

Types of Computer Forensics Tools

- Hardware forensic tools
 - Range from single-purpose components to complete computer systems and servers
- Software forensic tools
 - Types
 - Command-line applications
 - GUI applications
 - Commonly used to copy data from a suspect's disk drive to an image file

Tasks Performed by Computer Forensics Tools

- Five major categories:
 - Acquisition
 - Validation and discrimination
 - Extraction
 - Reconstruction
 - Reporting

Acquisition

- Making a copy of the original drive
- Acquisition subfunctions:
 - Physical data copy
 - Logical data copy
 - Data acquisition format
 - Command-line acquisition
 - GUI acquisition
 - Remote acquisition
 - Verification

- Acquisition (continued)
 - Two types of data-copying methods are used in software acquisitions:
 - Physical copying of the entire drive
 - Logical copying of a disk partition
 - The formats for disk acquisitions vary
 - From raw data to vendor-specific proprietary compressed data
 - You can view the contents of a raw image file with any hexadecimal editor

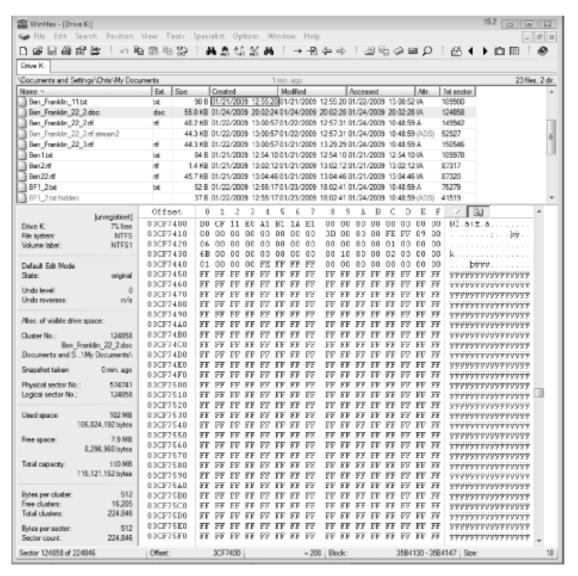


Figure 7-1 Viewing data in a hexadecimal editor

- Acquisition (continued)
 - Creating smaller segmented files is a typical feature in vendor acquisition tools
 - All computer forensics acquisition tools have a method for verification of the data-copying process
 - That compares the original drive with the image

- Validation and discrimination
 - Validation
 - Ensuring the integrity of data being copied
 - Discrimination of data
 - Involves sorting and searching through all investigation data

- Validation and discrimination (continued)
 - Subfunctions
 - Hashing
 - CRC-32, MD5, Secure Hash Algorithms
 - Filtering
 - Based on hash value sets
 - Analyzing file headers
 - Discriminate files based on their types
 - National Software Reference Library (NSRL) has compiled a list of known file hashes
 - For a variety of OSs, applications, and images

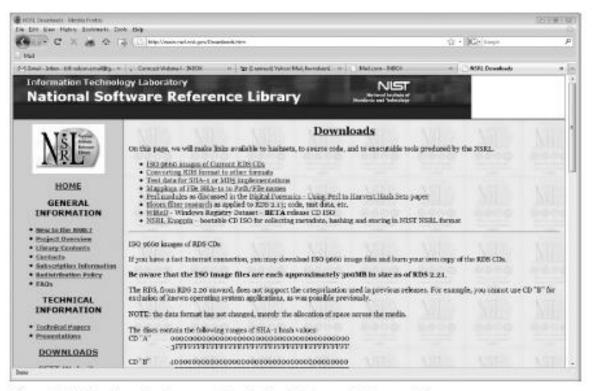


Figure 7-2 The download page of the National Software Reference Library

- Validation and discrimination (continued)
 - Many computer forensics programs include a list of common header values
 - With this information, you can see whether a file extension is incorrect for the file type
 - Most forensics tools can identify header values

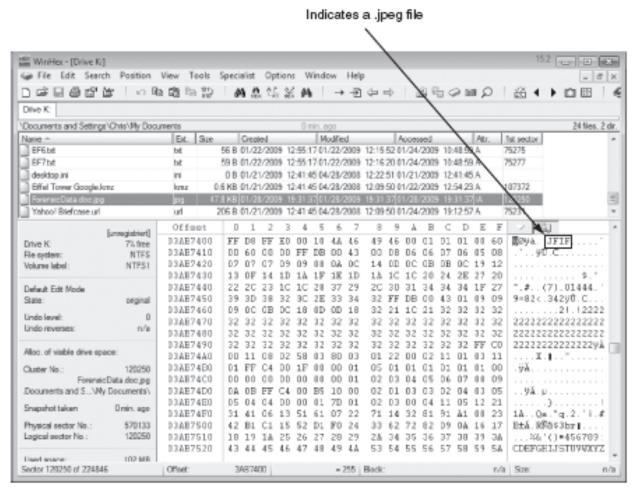


Figure 7-3 The file header indicates a .jpeq file

Figure 7-4 Error message displayed when trying to open a JPEG file in Word

Figure 7-5 ForensicData.doc open in an image viewer

Extraction

- Recovery task in a computing investigation
- Most demanding of all tasks to master
- Recovering data is the first step in analyzing an investigation's data

- Extraction (continued)
 - Subfunctions
 - Data viewing
 - Keyword searching
 - Decompressing
 - Carving
 - Decrypting
 - Bookmarking
 - Keyword search speeds up analysis for investigators

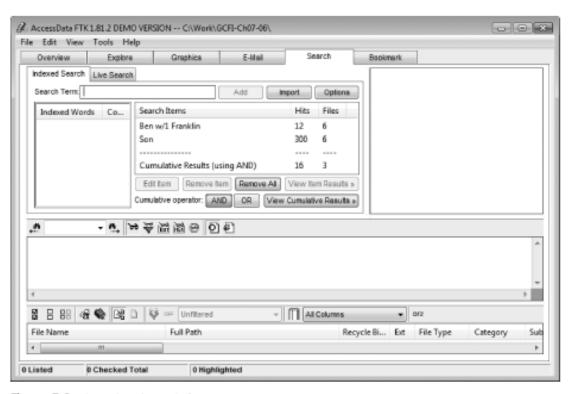


Figure 7-6 The Indexed Search feature in FTK

Figure 7-7 Data-carving options in FTK

- Extraction (continued)
 - From an investigation perspective, encrypted files and systems are a problem
 - Many password recovery tools have a feature for generating potential password lists
 - For a password dictionary attack
 - If a password dictionary attack fails, you can run a brute-force attack

Reconstruction

- Re-create a suspect drive to show what happened during a crime or an incident
- Subfunctions
 - Disk-to-disk copy
 - Image-to-disk copy
 - Partition-to-partition copy
 - Image-to-partition copy

- Reconstruction (continued)
 - Some tools that perform an image-to-disk copy:
 - SafeBack
 - SnapBack
 - EnCase
 - FTK Imager
 - ProDiscover

- Reporting
 - To complete a forensics disk analysis and examination, you need to create a report
 - Subfunctions
 - Log reports
 - Report generator
 - Use this information when producing a final report for your investigation

Tool Comparisons

Table 7-1 Comparison of forensics tool functions

Function	ProDiscover Basic	AccessData Ultimate Toolkit	Guidance Software EnCase
Acquisition			
Physical data copy	√	√	√
Logical data copy	√	√	V
Data acquisition formats	√	√	V
Command-line process			V
GUI process	√	√	V
Remote acquisition			√*
Verification	√	√	V
Validation and discrimination			
Hashing	√	√**	√**
Filtering		√	√
Analyzing file headers		√	√
Extraction			
Data viewing	√	V***	√***
Keyword searching	√	√	V
Decompressing		√	1
Carving		√	V
Decrypting		$\sqrt{}$	
Bookmarking	\checkmark	√	$\sqrt{}$
Reconstruction			
Disk-to-disk copy	\checkmark	√	V
Image-to-disk copy	√	√	1
Partition-to-partition copy	\checkmark		1
Image-to-partition copy	√		1
Reporting			
Log reports		√	1
Report generator	√	√	

Other Considerations for Tools

- Considerations
 - Flexibility
 - Reliability
 - Expandability
 - Keep a library with older version of your tools
- Create a software library containing older versions of forensics utilities, OSs, and other programs

Computer Forensics Software Tools

 The following sections explore some options for command-line and GUI tools in both Windows and UNIX/Linux

Command-line Forensic Tools

- The first tools that analyzed and extracted data from floppy disks and hard disks were MS-DOS tools for IBM PC file systems
- Norton DiskEdit
 - One of the first MS-DOS tools used for computer investigations
- Advantage
 - Command-line tools require few system resources
 - Designed to run in minimal configurations

UNIX/Linux Forensic Tools

- *nix platforms have long been the primary command-line OSs
- SMART
 - Designed to be installed on numerous Linux versions
 - Can analyze a variety of file systems with SMART
 - Many plug-in utilities are included with SMART
 - Another useful option in SMART is its hex viewer

UNIX/Linux Forensic Tools (continued)

- Helix
 - One of the easiest suites to begin with
 - You can load it on a live Windows system
 - Loads as a bootable Linux OS from a cold boot
- Autopsy and SleuthKit
 - Sleuth Kit is a Linux forensics tool
 - Autopsy is the GUI/browser interface used to access Sleuth Kit's tools

Figure 7-8 The Helix menu

UNIX/Linux Forensic Tools (continued)

- Knoppix-STD
 - Knoppix Security Tools Distribution (STD)
 - A collection of tools for configuring security measures, including computer and network forensics
 - Knoppix-STD is forensically sound
 - Doesn't allow you to alter or damage the system you're analyzing
 - Knoppix-STD is a Linux bootable CD

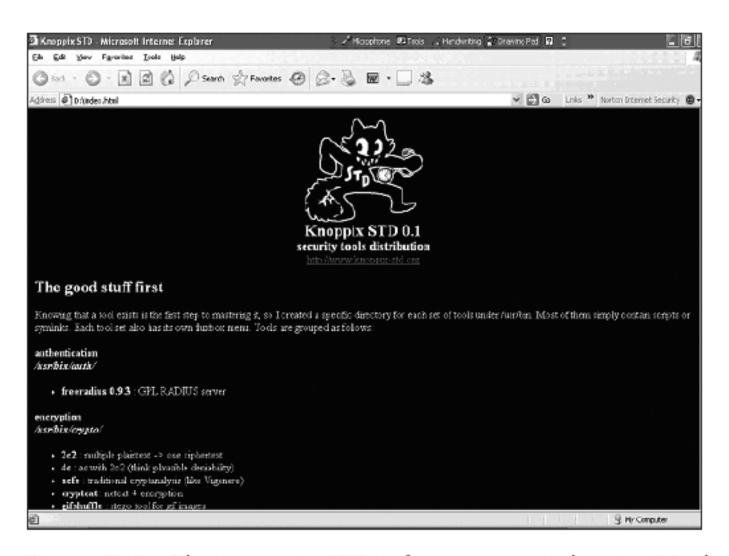


Figure 7-9 The Knoppix-STD information window in Windows

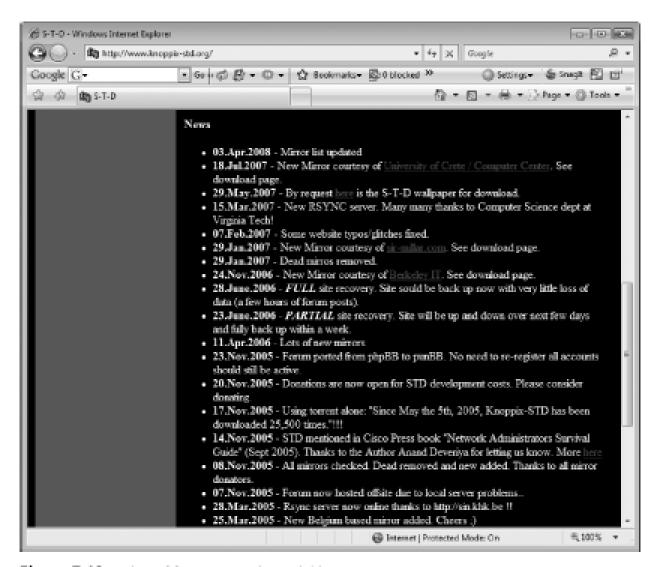


Figure 7-10 A list of forensics tools available in Knoppix-STD

Other GUI Forensic Tools

- Simplify computer forensics investigations
- Help training beginning investigators
- Most of them come into suites of tools
- Advantages
 - Ease of use
 - Multitasking
 - No need for learning older OSs

Other GUI Forensic Tools (continued)

- Disadvantages
 - Excessive resource requirements
 - Produce inconsistent results
 - Create tool dependencies

Computer Forensics Hardware Tools

- Technology changes rapidly
- Hardware eventually fails
 - Schedule equipment replacements
- When planning your budget consider:
 - Failures
 - Consultant and vendor fees
 - Anticipate equipment replacement

Forensic Workstations

- Carefully consider what you need
- Categories
 - Stationary
 - Portable
 - Lightweight
- Balance what you need and what your system can handle

Forensic Workstations (continued)

- Police agency labs
 - Need many options
 - Use several PC configurations
- Private corporation labs
 - Handle only system types used in the organization
- Keep a hardware library in addition to your software library

Forensic Workstations (continued)

- Not as difficult as it sounds
- Advantages
 - Customized to your needs
 - Save money
- Disadvantages
 - Hard to find support for problems
 - Can become expensive if careless
- Also need to identify what you intend to analyze

Forensic Workstations (continued)

- You can buy one from a vendor as an alternative
- Examples
 - F.R.E.D.
 - F.I.R.E. IDE
- Having vendor support can save you time and frustration when you have problems
- Can mix and match components to get the capabilities you need for your forensic workstation

Using a Write-Blocker

Write-blocker

- Prevents data writes to a hard disk
- Software-enabled blockers
 - Software write-blockers are OS dependant
 - Example: PDBlock from Digital Intelligence
- Hardware options
 - Ideal for GUI forensic tools
 - Act as a bridge between the suspect drive and the forensic workstation

Using a Write-Blocker (continued)

- Can navigate to the blocked drive with any application
- Discards the written data
 - For the OS the data copy is successful
- Connecting technologies
 - FireWire
 - USB 2.0
 - SCSI controllers

Recommendations for a Forensic Workstation

- Determine where data acquisitions will take place
- Data acquisition techniques
 - USB 2.0
 - FireWire
- Expansion devices requirements
- Power supply with battery backup
- Extra power and data cables

Recommendations for a Forensic Workstation (continued)

- External FireWire and USB 2.0 ports
- Assortment of drive adapter bridges
- Ergonomic considerations
 - Keyboard and mouse
 - A good video card with at least a 17-inch monitor
- High-end video card and monitor
- If you have a limited budget, one option for outfitting your lab is to use high-end game PCs

Validating and Testing Forensic Software

- Make sure the evidence you recover and analyze can be admitted in court
- Test and validate your software to prevent damaging the evidence

Using National Institute of Standards and Technology (NIST) Tools

- Computer Forensics Tool Testing (CFTT) program
 - Manages research on computer forensics tools
- NIST has created criteria for testing computer forensics tools based on:
 - Standard testing methods
 - ISO 17025 criteria for testing items that have no current standards
 - ISO 5725

Using National Institute of Standards and Technology (NIST) Tools (continued)

- Your lab must meet the following criteria
 - Establish categories for computer forensics tools
 - Identify computer forensics category requirements
 - Develop test assertions
 - Identify test cases
 - Establish a test method
 - Report test results
- Also evaluates drive-imaging tools using
 - Forensic Software Testing Support Tools (FS-TST)

Using National Institute of Standards and Technology (NIST) Tools (continued)

- National Software Reference Library (NSRL) project
 - Collects all known hash values for commercial software applications and OS files
 - Uses SHA-1 to generate a known set of digital signatures called the Reference Data Set (RDS)
 - Helps filtering known information
 - Can use RDS to locate and identify known bad files

Using Validation Protocols

- Always verify your results
- Use at least two tools
 - Retrieving and examination
 - Verification
- Understand how tools work
- One way to compare results and verify a new tool is by using a disk editor
 - Such as Hex Workshop or WinHex

Using Validation Protocols (continued)

- Disk editors
 - Do not have a flashy interface
 - Reliable tools
 - Can access raw data
- Computer Forensics Examination Protocol
 - Perform the investigation with a GUI tool
 - Verify your results with a disk editor
 - Compare hash values obtained with both tools

Using Validation Protocols (continued)

- Computer Forensics Tool Upgrade Protocol
 - Test
 - New releases
 - OS patches and upgrades
 - If you find a problem, report it to forensics tool vendor
 - Do not use the forensics tool until the problem has been fixed
 - Use a test hard disk for validation purposes
 - Check the Web for new editions, updates, patches, and validation tests for your tools

Summary

- Create a business plan to get the best hardware and software
- Computer forensics tools functions
 - Acquisition
 - Validation and discrimination
 - Extraction
 - Reconstruction
 - Reporting
- Maintain a software library on your lab

Summary (continued)

- Computer Forensics tools types
 - Software
 - Hardware
- Forensics software
 - Command-line
 - GUI
- Forensics hardware
 - Customized equipment
 - Commercial options
 - Include workstations and write-blockers

Summary (continued)

- Tools that run in Windows and other GUI environments don't require the same level of computing expertise as command-line tools
- Always test your forensics tools