
DRAFT: NOT FOR DISTRIBUTION

Computer Forensics Procedures and Methods

J. Philip Craiger, Ph.D., CISSP
Assistant Director of Digital Evidence

National Center for Forensic Science &
Department of Engineering Technology

University of Central Florida1

Email: philip@craiger.net

To appear in H. Bigdoli (Ed.), Handbook of Information Security. John Wiley & Sons.

1

mailto:philip@craiger.net


DRAFT: NOT FOR DISTRIBUTION

Keywords

Digital forensics, computer forensics, network forensics, cyberforensics, digital evidence, 
computer evidence, computer crime, incident response, Linux forensics,  Windows foren
sics, computer forensic tools, computer forensics procedures, disk forensics, media foren
sics, intrusion forensics, intrusion detection systems, Knoppix.

2



DRAFT: NOT FOR DISTRIBUTION

Abstract

Computer forensics involves the preservation, identification, extraction and documentation 
of digital evidence in the form of magnetically, optically, or electronically stored media. It 
is a relatively new science that is becoming increasingly important as criminals aggressive
ly expand the use of technology in their enterprise of illegal activities.   This chapter is a 
technical introduction and overview to some of the fundamental methods and procedures 
of computer forensics.  The topics covered parallel the order in which computer forensic 
procedures are typically conducted, beginning with process of creating a bitstream image 
of the evidence and subsequent verification of the evidence using oneway hash functions. 
Two forms of forensic analysis are covered, including logical and physical analysis proce
dures.  Analytic procedures we demonstrate include hash and signature analysis; keyword 
and email searches; recovery and analysis of cookies, print spool and application residual 
files; slack and unallocated space analysis; manual recovery of deleted files; behavioral 
timelines creation; and collecting evidence from running systems. We close the chapter by 
describing several commercial tools.

3



DRAFT: NOT FOR DISTRIBUTION

1. Introduction
a. Computer Forensic Tools
b. The Forensic Server

2. Sound Computer Forensic Practice
3. Arriving at the Scene: Initial Response

a. Creating a Forensic Image
b. Verifying Image Integrity
c. Imaging Over a Network
d. Sterilizing Forensic Media

4. Analysis of a Forensic Image
a. Drive Geometry
b. Mounting the Image
c. Reducing our Search Space

i. Hash Analysis
ii. Signature Analysis

d. Searching A Forensic Image
i. Keyword Searches

ii. Finding Files by Type
iii. Email Searches
iv. Swap file
v. Webbased Email

vi. The Windows Swap File
e. I know what you did with your computer last summer…

i. Cookies
ii. Deleted Files and the INFO2 File

iii. Application Residual Files
iv. UNICODE
v. Print Spool Files

f. Physical Analysis
i. What Happens when a File is Deleted

ii. Unallocated Space Revisited
iii. Slack Space
iv. Recovering Deleted Files
v. Dealing with Formatted Drives

g. Behavioral Timelines: What Happened and When?
5. Collecting Evidence from Live Systems

a. Volatile Evidence
b. Log Files as Digital Evidence
c. Reducing the Potential for Evidence Contamination

6. Commercial Tools
7. Conclusion
8. Glossary
9. References
10. Further Reading

4



DRAFT: NOT FOR DISTRIBUTION

Introduction

Computer forensics involves the preservation, identification, extraction and documentation 
of computer evidence stored in the form of magnetically, optically, or electronically stored 
media. It is a relatively new science that is becoming increasingly important as criminals 
aggressively expand the use of technology in their enterprise of illegal activities. Computer 
forensic techniques are not as advanced as those of the more mature and mainstream foren
sics techniques used by law enforcement, such as blood typing, ballistics, fingerprinting, 
and DNA testing.  Its immaturity is partly attributable to fastpaced changes in computer 
technology, and the fact that it is a multidisciplinary subject, involving complicated associ
ations between the legal system, law enforcement, business management, and information 
technology.  

This chapter is a technical introduction and overview to fundamental methods and proce
dures of computer forensics.  To get the most out of this chapter we have assumed readers 
will have technical skills with computers running a variety of operating systems.  

The Handbook of Information Security, in particular volume II, has several chapters relat
ed to numerous aspects of computer forensics, including the legal, law enforcement, and 
managerial aspects.  These chapters include Computer Forensics in Law Enforcement, 
Forensic Science and Computers, and Computer Security Reviews Using Computer Foren
sics Tools, Digital Evidence, Digital Courts, Law, and Evidence, Cybercrime and Cyber
fraud, and Hack, Cracker, and Computer Criminals.  To fully understand the practice and 
implications of computer forensics we urge readers to carefully examine each of these 
chapters. And as you read this chapter be aware that computer forensics is a set of techni
cal activities that occurs with a complex setting of interacting stake holders who often have 
conflicting goals.  Before conducting a computer forensics investigation we advise the 
reader to seek advice from legal counsel to ensure that no local, state, or federal laws are 
broken.  Nothing in this chapter is intended to be legal advice, and should not be construed 
as such.

In this chapter we illustrate both offline and online analyses.  An offline analysis occurs 
when an investigator powers down the computer and removes it from the network. This al
lows the investigator to create an exact copy of the computers hard drive to ensure that the 
files remained unchanged, and to ensure all evidence, but condemning, as well as exculpa
tory, is collected. In contrast, there are occasions when it is impossible to power down a 
computer, requiring an online analysis. For instance, management may not permit the shut
down of a company’s only ecommerce server.  In this circumstance the investigator must 
gather as much evidence as possible while the system remains running and connected to a 
network.  From a purely forensic standpoint, the preferred situation is to ‘freeze’ the com
puters state by powering down the system.  However, in reality this is not always possible, 
and investigators should be proficient in methods for gathering evidence from a running 
computer system.

We begin this chapter by describing an offline analysis involving desktop computers run
ning versions of Microsoft Windows™. Windows plays a prominent role because of its 
large worldwide market share, and the fact that the law enforcement agencies (Dartmouth, 
2002), as well as the FBI’s Computer Analysis and Response Team (Pollitt, 2002, personal 
communication) have indicated that the majority of investigations involve computers run
ning some version of Windows.  We conclude this chapter by discussing an online analy

5



DRAFT: NOT FOR DISTRIBUTION

sis, such as a server running Linux or UNIX that cannot be shutdown, requiring the investi
gator to work on a running computer system.  

Computer Forensics Tools 

Investigators have a variety of forensic tools from which to choose.  Some tools run exclu
sively under Windows, others under Linux/UNIX, and some on several operating systems. 
The focus of this chapter is on illustrating fundamental computer forensics concepts, and 
not a particular tool.  An important reason for not using pointandclick tools for our 
demonstrations is that these tools don’t illustrate the fundamental, technical details that 
form the core of computer forensic procedures.   For example, when an investigator clicks 
on a GUI button labeled [Recovered Deleted File] from within a GUIbased tool she 
should be able to explain what the program is doing to recover the files.  In real life of 
course, investigators are likely to use one of the many GUIbased tools that are available 
(some of these are described at the end of this chapter).  Nevertheless, a fundamental un
derstanding of these concepts is especially important for the credibility of the investigator 
should she be required to testify in a court of law as an expert or technical witness.  

Accordingly, we use Linuxbased tools for our demonstrations.  Linux is an operating sys
tem kernel.  The command line utilities we use to conduct our forensic procedures are part 
of the GNU utilities (www.gnu.org) that are included in every Linux distribution.  A Linux 
distribution is a vendor compilation of the Linux kernel, GNU utilities, and hundreds of 
software programs, plus an installer.  There are several dozen Linux distributions, although 
only a few are major commercial distributions, the largest of which are Redhat (www.red
hat.com) and SuSE (www.suse.com). Readers are directed to www.distrowatch.com and 
www.linux.org to learn more about various Linux distributions.  All demonstrations herein 
were tested with SuSE Professional 9.0/9.1, Fedora Core 1, and Redhat 9.

The Forensic Server

We assume that most computer crime investigations will involve at least one ‘subject’ 
computer, i.e., the source of the evidence we are seeking, as well as a ‘forensic server’ that 
contains our forensics toolkits.  For our demonstration purposes we assume that the foren
sic server has a Linux distribution installed, or is dualbootable Window/Linux, which is 
how all of our computers are configured.  Although in theory the Linux distribution should 
be irrelevant, certain commercial versions such as Red Hat (www.redhat.com) and SuSE 
(www.suse.com) are often preferred because they offer support services and are fairly easy 
to install and update. 

The activities performed in a forensic analysis may easily tax the average computer. 
Therefore it is important that a good deal of thought is put into the components that 
compose the forensic server to ensure that it is of sufficient quality and power so that 
imaging and analysis is not problematic.  For instance, it is desirable to have as much 
physical RAM as one can afford, as well as a fast processor (all of which are relative and 
changing daily).  The forensic server will enough drive space to hold the operating system, 
several forensic tools, as well as all of the forensic images collected from the subject’s 
computer.  Other considerations include the need to read and examine numerous portable 
disk formats, including old ZIP disks, superdrive disks, old floppy formats such as the 5.25 
floppies, and so on.  It is a good idea to have on hand many different types of disk readers 
that can be placed into the forensic computer should the need arise.  Should the 

6

http://www.suse.com/
http://www.redhat.com/
http://www.linux.org/
http://www.distrowatch.com/
http://www.suse.com/
http://www.redhat.com/
http://www.redhat.com/
http://www.gnu.org/


DRAFT: NOT FOR DISTRIBUTION

investigator come upon a digital evidence format that is not common, EBay 
(www.ebay.com) or similar sites may have such equipment available. 

Sound Computer Forensic Practice

There are numerous circumstances that may require a computer forensic investigation but 
not necessarily law enforcement intervention.  For instance, a company employee suspect
ed of sending sexually explicit emails or running a personal business may be subject to an 
investigation because these activities violate corporate acceptable use policy and subject 
the employee to disciplinary action; however, they are not illegal and do not require law 
enforcement intervention.   Nevertheless, it is good practice to work under the assumption 
that any investigation could end up in court.  The reason is that there are countless stories 
of investigations that started off for one reason but escalated to a point requiring law en
forcement intercession.  For instance, an investigation instigated by allegations that an em
ployee surfing pornography web sites on his lunch break may reveal evidence of a cache of 
child pornography on the employee’s hard drive, a Federal crime under 18 USC 2251 and 
2252.  The situation must be reported to law enforcement and would likely end up in court. 

The Federal rules of evidence (http://www.law.cornell.edu/rules/fre/overview.html) govern 
the introduction of evidence in both civil and criminal proceedings in Federal courts. 
These rules are strict regarding the handling of evidence.  Evidence not collected in accor
dance with the Federal rules of evidence may be disallowed by a judge.  Sound forensic 
practices decreases the potential for a defense attorney to question the integrity of evi
dence, and for the judge to disallow the introduction of evidence into a court proceeding.  

Computer forensics procedures can be distilled into three major components:

1) Make a digital copy of the original evidence.  Investigators make a copy of the evi
dence and work with the copy to reduce the possibility of inadvertently changing the 
original evidence.  

2) Authenticate that the copy of the evidence.  Investigators must verify the copy of the 
evidence is exactly the same as the original.

3) Analyze the digital copy. The specific procedures performed in an investigation are de
termined by the specific circumstances under which the investigation is occurring.  

Our chapter will generally follow this outline.  We begin by demonstrating two ways in 
which to make forensicallysound copies of digital evidence, followed by a demonstration 
of a simple and effective way of verifying the integrity of a digital copy.  The remaining 
portions of this chapter are devoted to procedures for analyzing digital evidence.  

Arriving at the Scene: The Initial Response

There are two important rules regarding the initial response to a computer crime scene. 
One of the most critical times at any crime scene is when the crime is first discovered. 
The first activity performed by law enforcement at a physical crime is to restrict access by 
surrounding the crime scene with yellow tape, something most of us have seen on TV hun
dreds of times.  It is just as important to restrict access to the computer at a computer 
crime scene, to decrease the likelihood of changing the evidence.      

The second rule is to document the crime scene and all activities performed.  Good docu
mentation is crucial for several reasons.  First, it allows the investigator to refresh her 

7

http://www.law.cornell.edu/rules/fre/overview.html
http://www.ebay.com/


DRAFT: NOT FOR DISTRIBUTION

memory should she have to testify.  Second, it allows the court to verify that correct foren
sic procedures were performed.  Finally, it allows for the recreation of the activities that 
were performed in the initial response.  

Special agent Mark Pollitt (retired), former Unit Chief of the Federal Bureau of Investiga
tions Computer Analysis and Response Team (CART) says: “Computer forensics is all 
about process” (Pollitt, 2003, personal communication).   The process should be repeatable 
and predictable, and stay within the confines of the law.  We underscore the importance of 
following sound forensic practice during investigations, as there is a significant potential 
for any investigation to have legal implications for the investigator, her employer, or the 
subject of the investigation.  Below we outline of the activities that should be performed as 
an initial response to a potential computer crime scene.  The following is partly adapted 
from International Association of Computer Investigation Specialists http://www.iacis.
com/forensic_examination_procedures.htm as well as U.S. Secret Service’s Best Practices 
Guide for Seizing Electronic Evidence (http://www.secretservice.gov/electronic_evi
dence.shtml).

1. Immediately determine if a destructive program is running on the computer.  If one is 
running, the investigator should pull the power plug from the back of the computer (not 
at the outlet).  This will ensure no further evidence is lost. Place tape across all open 
disk drives so that no media is inadvertently placed in the disk drives. The system date 
and time should be collected from the BIOS setup. This time should be compared with 
a reliable time source (e.g., one synchronized with an atomic clock), and any discrep
ancies noted. This may be important if it is necessary to correlate events between two 
computers, or between the activities of a user and the times associated with particular 
files on the computer.

2. Document the computer and its surroundings.  Video tape and photographs are good 
supplements to handwritten notes. Things to document include: The computer’s make, 
model, serial number, attachments to the computer (e.g., external hard drives, speakers, 
cable modem, USB or network hubs, wireless network routers, and so on), the state of 
the machine, i.e., whether it was on or not, as well as the surrounding environment.

3. If the computer is running, take a photograph of the screen.  Photographs demonstrate 
that the computer was running as well as visually documenting what was running at the 
time of the initial response.

4. Take photographs of the front, side, and back of the computer.  A photograph of the 
back of the computer will allow an investigator to recreate the computer setup should 
the computer need to be seized and taken back to a lab for further investigation.  If the 
computer is to be seized, label connectors (network, USB, firewire, etc.).   

5. Physically open the computer and take photographs of the inside of the computer. 
These photographs will show the number of hard disks connected, as well as any pe
ripherals, such as network and sound cards. 

6. Bagandtag of all potential evidence. Bagandtag is a law enforcement term that 
refers to the process of placing crime scene evidence (e.g., hairs, fibers, guns, knives, 
and so on) into bags, and tagging them with relevant information including date and 
time collected, name of investigator, where collected, etc.  All potential evidence such 
as floppy disks, CDs, DVDs, papers surrounding the computer, etc., should be subject
ed to a bagandtag. 

7. Some situations require the confiscation of the source computer by law enforcement 
(Heverly & Wright, 2002).  If the computer is to be transported to an offsite forensics 
ab, label each computer part and place in an appropriate container for transport. 

8. Search for ‘sticky notes’ or any other written documentation near the computer (includ
ing under the keyboard, under the desk, in desk drawers, etc.). Users often write down 

8

http://www.secretservice.gov/electronic_evidence.shtml
http://www.secretservice.gov/electronic_evidence.shtml
http://www.iacis.com/forensic_examination_procedures.htm
http://www.iacis.com/forensic_examination_procedures.htm


DRAFT: NOT FOR DISTRIBUTION

passwords and leave them in convenient places near the computer.  Passwords may be 
necessary if the user has used encryption to obfuscate file contents.  Make sure to look 
at the waste basket as it may hold valuable information.

9. Take any computer manuals in case they are needed for reference back at the forensics 
lab.

10. If the original evidence is to be confiscated it should be stored in a secure place.

Creating a Forensic Image

The first step in acquiring digital evidence is to create an exact physical copy of the evi
dence.  This copy is often called a bitstream image (Kruse & Heiser, 2001), forensic du
plicate (Mandia, Prosise, & Pepe, 2003), or forensic image.  Creating a forensic image is 
important for several reasons. From a legal standpoint, courts look favorably upon forensic 
images because it demonstrates that all of the evidence was captured, condemning as well 
as exculpatory, following the spirit of the Federal Rules of Evidence.  From an investigato
ry perspective, forensic images contain the contents of previously deleted files and other 
ambient data, information not available if only a logical copy of files is made.  

Historically a running computer was of little concern to law enforcement as the standard 
operating procedure was to remove the power source from the computer, i.e., pulltheplug, 
whether the computer was running or not.  Pullingtheplug follows general police inves
tigative procedures to ‘freeze’ the crime scene.  Pullingtheplug is analogous to the yellow 
“Do Not Cross Police Line” tape as it freezes the computer crime scene.  This practice is 
no longer a hardandfast rule as pullingtheplug may lose valuable evidence, e.g., running 
network connections and the contents of RAM.

Options for freezing the computer include pulling the plug or gracefully shutting the com
puter down (i.e., that is through the mouse sequence: Start: Turn Off Computer: Turn Off). 
In personal experiments involving computers running versions of Windows 98 and Win
dows XP we observed that a graceful shutdown results in changes to several hundred files 
on the disk.  This could have a significant effect upon a law enforcements ability to prose
cute a case, especially trying to explain how the investigating officer managed to change 
several hundred files on the evidence media. Our advice is that the circumstances must de
termine whether it is appropriate to pulltheplug or perform a graceful shutdown.  

We must access the hard drive on the subject’s computer to create our image.  How do we 
access the source hard drive?  One way is to physically remove it from the source comput
er and connect it to the investigator’s forensics machine.  For example, if the source drive 
is an ATA (IDE), it is relatively simple to remove it and reconnect it to an open IDE ribbon 
cable connection in the forensics computer, as demonstrated in Figure 1.
.  

9



DRAFT: NOT FOR DISTRIBUTION

Figure 1.  Direct connection to internal IDE controller

There are two caveats to this method.  First, if we are imaging using a Windowsbased ap
plication to image then we must use a write blocker (see Figure 2 below) to ensure that no 
data is written back to the subject’s hard drive, as Window’s will automatically mount the 
hard drive as read+write, which may change files on the hard drive.  If we are using Linux 
then a write blocker is not required because we can manually mount the hard drive as ‘read 
only.’ Forensic imaging under Windows therefore requires the use of a special ‘write
blocker,’ a hardware mechanism that allows reading from, but not writing to, the hard 
drive (see Figure 2). Write blockers are available from several sources, including FireFly 
from www.digitalintel.com, and FastBloc from www.guidancesoftware.com. 

Second, directly connecting the subject’s hard drive to our forensic server’s IDE chain re
quires that the jumpers on the source drive be appropriately set to slave or cable select. 
Changing jumper settings will not change any files on the hard drive. 

10

http://www.guidancesoftware.com/
http://www.digitalintel.com/


DRAFT: NOT FOR DISTRIBUTION

Figure 2.  Writeblock with firewire connection 

Figure 2 demonstrates the use of a writeblock to connect a subject’s hard drive.  The hard 
drive is connected to the writeblock, which is connected via a USB or firewire cable to the 
forensic server.   

Once we have connected our hard drive we can begin the imaging process.  In the follow
ing demonstration we will create a forensic image of a floppy; however, the process if very 
similar for all media, any differences are indicated below.  Later we will demonstrate how 
to image a hard drive over a network connection.

From a terminal window we use the GNU utilities from a command prompt to make our 
forensic image.  First we write protect the floppy, then place the disk in our floppy drive on 
our forensic server.  The commands we executed have been marked in brackets for ease of 
reference.

[1] jpc@simba:~> script case.1034
    Script started on Tue 23 Mar 2004 03:25:36 PM CST
[2] jpc@simba:~> date
    Tue Mar 23 15:25:39 CST 2004
[3] jpc@simba:~> dd if=/dev/fd0 of=1034.dd bs=1024 conv = noerror, 
notrunc,sync
    2880+0 records in
    2880+0 records out
[4] jpc@simba:~> md5sum /dev/fd0 1034.dd > evidence.md5
[5] jpc@simba:~> cat evidence.md5 
    04c09fa404ac7611b20a1acc28e7546c  /dev/fd0
    04c09fa404ac7611b20a1acc28e7546c  1034.dd
[6] jpc@simba:~> date
    Tue Mar 23 15:34:13 CST 2004
[7] jpc@simba:~> exit
    Script done on Tue 23 Mar 2004 03:34:14 PM CST

A good investigator documents the crime scene as well as the procedures performed.  We 
can supplement our handwritten notes with the script command. script [1] makes a 

11



DRAFT: NOT FOR DISTRIBUTION

copy of everything printed on the screen (both input and output) and places it in a file, here 
descriptively called case.1034.  

We then print the current date and time with date [2].  It is good practice to ‘sandwich’ 
your forensic activities between two date commands [2]& [6] to demonstrate when and 
how long the activities required.

Next we use the dd [3] command to create a forensic image of the floppy disk: 

# dd if=/dev/fd0 of=1034.dd

dd takes as input a stream of bits, and outputs a stream of bits, making an exact physical 
duplicate of a file, drive, etc.  In this example dd is reading from the device /dev/fd0, a log
ical device associated with the floppy disk drive, and writing it to a file we have named 
1034.dd.  In Linux physical devices are logically associated with a file residing in the /dev 
directory.  These associations are shown in Table 1.  Note that the names of the logical de
vices may differ between Linux distributions, or between versions of Unix.  The nomelca
ture below is fairly standard for most POSIX compliant Linux distributions, including Red
hat, SuSE, Mandrake, Slackware, Debian, and Gentoo.

Logical Device Physical Device
/dev/hda 1st IDE hard drive on primary controller
/dev/hda1 1st partition 1st hard drive on primary controller
/dev/hdb 2nd IDE hard drive on primary controller
/dev/hdc 1st IDE hard drive on secondary controller
/dev/hdd5 5th partition on 2nd hard drive on secondary  con

troller
/dev/sda 1st SCSI device
/dev/sda1 1st  partition on 1st SCSI device
/dev/cdrom 1st CDROM drive
/dev/fd0 1st floppy disk

Table 1.  Mapping from logical to physical device

The argument if= specifies the source image, here the logical device associated with the 
floppy drive. The argument of= specifies the output file’s name.  The bs= argument 
specifies the block size to read and write, and is optional.  The default block size is 512 
bytes.  The conv argument specifies other command line arguments to include.  For imag
ing we include: a) noerror, continue after a read error; b) notrunc, do not truncate the 
output in case of an error, and c) sync, in case of a read error, pad input blocks with zeros. 

After the dd operation is completed it prints to the screen the number of records (i.e., 
blocks) it read and wrote.  Here it read 1440 records and wrote the same number. This is 
correct because we have specified a block size of 1024 bytes (1 kilobyte), and 1 kilobyte 
multiplied by the number of blocks  (records = 1440) is 1.44MB, which is the size of a 
highdensity floppy disk.

Verifying Image Integrity 

12



DRAFT: NOT FOR DISTRIBUTION

Next we must verify that we made an exact bitforbit copy of the evidence, i.e., a forensic 
image of the floppy.  We use md5sum [4] to verify the integrity of image:

# md5sum /dev/fd0 1034.dd > 1034.md5

md5sum calculates an MD5 cryptographic hash, also known as a message digest, or simply 
hash.  The MD5 message digest (Rivest, 1992) is a oneway hash algorithm that takes as 
an input a file of arbitrary length and outputs a 128bit hexadecimal formatted number that 
is unique to a file’s contents.  Two files with the same contents will always result in the 
same 128bit hash value.  The file’s contents alone determine a hash value, not associated 
metadata (e.g., file name, date and times, size, etc.).  This fact will be important when we 
later consider ways to identify illegal or inappropriate files.

We verify the integrity of our evidence by calculating the MD5 hash for the original floppy 
disk (/dev/fd0) and the forensic image (1034.dd).  If the hashes are the same we can rest as
sured the copy we made is a bitforbit duplicate of the evidence.  We save the contents of 
the command by redirecting it to a file that can be printed for safekeeping.   

Any differences between the contents of the floppy disk and our forensic image are so indi
cated in the hash.  To illustrate this phenomenon, we used a hex editor to add a single 
space into the boot sector of the 1034.dd image, and then reran the MD5 hash on the im
age.  Comparing the old and new hashes: 

Old Hash: 04c09fa404ac7611b20a1acc28e7546c  
New Hash: dbbbd457d0283103e7148075abb5b91e

Imaging over a Network

An alternative to removing the hard drive from the subject computer is to use a network 
connection.  A ‘network acquisition’ requires both computers have network interface cards 
(NICS; i.e., Ethernet cards), a network crossover cable, and a bootable Linux CD.   A net
work crossover cable allows the investigator to directly connect two computers without a 
hub or switch.

Several bootable Linuxbased CDROMs are available.  Most of these are based on the 
popular Knoppix CD (www.knoppix.com).  Knoppix contains over a 1.7 gigabytes of soft
ware on a 700MB CD, possible through compression.  The CD contains utilities that are 
useful for forensics imaging and previewing.  Knoppix loads itself into a ram disk during 
boot, and will not access the hard drive of the subject’s computer (as of Knoppix 3.3). 
Knoppix boots into a graphical user interface that allows the investigator readonly access 
to the hard drives on the subject computer, which is very useful for previewing the con
tents of the source drive.

As of 2004 there are several forensics bootable Linux CDs.  These include Local Area Se
curity (www.localareasecurity.com), Knoppix Secure Tools Distribution (http://www.
knoppixstd.org/) and Penguin Sleuth Kit (http://www.linuxforensics.com/), and FIRE 
(http://fire.dmzs.com/), the former three of which are based upon Knoppix.

Although strictly speaking Knoppix is not ‘forensics distribution,’ it contains enough tools 
to make itself extremely useful in these circumstances.  It is so popular that we would sur
mise that it will be around for a long, long time.

13

http://fire.dmzs.com/
http://www.linux-forensics.com/
http://www.localareasecurity.com/
http://www.knoppix.com/


DRAFT: NOT FOR DISTRIBUTION

Sterilizing the Forensic Media

Before imaging the subject’s hard drive it is good practice to ‘sterilize’ or ‘wipe’ the desti
nation media on the forensic computer.  A forensic wipe removes any vestiges of previous 
contents on the drive, ensuring that a defense attorney cannot claim that any evidence re
covered from the subject’s hard drive was from the previous contents on the disk, caused 
by the comingling of evidence.

A forensic wipe is different than formatting a hard drive.  For instance, a quick formatting 
under Windows or DOS only deletes the bookkeeping portion of the file system (described 
later), including the root directory and the file allocation table. A quick format does not re
move the actual files: these files will remain until overwritten by the operating system.   A 
full format is the same as a quick format except that it also writes F6h over each of the sec
tors in the data area of the disk.  It does not, however, overwrite areas of the hard drive that 
are unaddressable by the operating system (usually several clusters at the end of a drive).  

A forensic wipe can be accomplished with the dd command:

# dd if=/dev/zero of=/dev/hdb1 bs=2048

The logical device /dev/zero is an infinite source of zeros.  Because we have specified 
our output to be /dev/hdb1 it will write a series of zeros to every single sector of the 
first partition on the second IDE hard drive.  The bs argument specifies that dd should 
read in blocks of 2048 bytes, overriding the default of 512 bytes.

We can verify that the procedure was successful using the grep command:

# grep –v ‘0’ /dev/hdb1

grep is a utility that searches for keywords within files.  We are searching for the string 
‘0’ on the logical device /dev/hdb1.  The –v argument specifies somewhat of a reverse 
search, that is, display everything on the media that is not ‘0.’  If grep finds anything that 
is not ‘0’ it will print the results to the screen.  (We have personally never seen dd fail in 
this task.).  

Wiping the drive removes the file system, so we must perform a highlevel format before 
we can copy the image to our destination hard drive.  Linux allows us to formats a drive in 
several different file system formats, including Linux/UNIXbased such as EXT2 or 
EXT3, or Windows FAT16/32.  Although Linux can read from and write to FAT32 for
matted drives, in this instance it is not our best choice as FAT32 has 4GB (232 bits) size 
limit for files, and most hard drives as 2004 are much larger. Unfortunately, NTFS write 
support under the current Linux kernel (either 2.4 or 2.6) is experimental, and is therefore 
not the best choice for critical tasks.  For purposes of this chapter we will create an EXT2 
file system on the destination drive.  Filesystems based on the Large File System specifica
tions can hold files up to 263 bytes in size (www.suse.de/~aj/linux_lfs.html).

# mkfs.ext2 /dev/hdb1

The mkfs command is a wrapper for several programs that create files systems. Here we 
are creating a standard Linux EXT2 file system.  

14

http://www.suse.de/~aj/linux_lfs.html


DRAFT: NOT FOR DISTRIBUTION

Once we have prepared our destination forensic drive we can begin our imaging process. 
Here are the steps to use a bootable Linux CD to acquire and preview a subject’s hard 
drive over a network: 

1. Check the boot order of your subject computer.  It is crucial that the boot order of the 
subject’s computer is set to boot from the CD before the hard drive.  If the reverse is 
true then the hard drive will boot instead of the CD.  This will result in changing the 
access and/or modification times on several hundred files on the hard drive.  Boot order 
is managed from the computer’s BIOS.  To check the boot order we first remove the 
power cable from the back of the source computer, not at the wall outlet. We then open 
the subject’s computer and remove the power supply connector from all of the hard 
drives.  This is critical because it guarantees that the source hard drive cannot boot in
advertently. We next replace the computer’s power cable and power the subjects com
puter on.  During the boot process the computer should display an onscreen message 
indicating a key to press to access the BIOS setup (e.g., F1, F2, [Delete], etc.). Press 
the appropriate key to access the BIOS.  If you miss the chance to access the BIOS the 
source hard drive cannot boot as its power source has been removed.  Reboot and try 
again. Once in the BIOS setup change the boot order to CD first, followed by the hard 
drive. Place the Knoppix CD into the source computer. Replace the power supply con
nectors to all of the hard drives.  DO NOT TURN ON THE SOURCE COMPUTER 
YET.  This is also a good time to note the systems date and time setting.

2. We then connect the network crossover cable between the source and forensics com
puter’s NICs, and then power on the subject’s computer.  It will boot into the Knoppix 
graphical user interface.  Icons that represent the hard drive partitions found by Knop
pix will appear on the desktop (see Figure 3).  These drives are not mounted.  You may 
preview the contents of the drives by clicking on the icons, which will open the drives 
readonly, displaying their contents in a file manager.  

Figure 3.  Knoppix Desktop 

3. You must manually configure each computer with a network address because neither 
computer is connected to a DHCP server.  Open up terminals on both computers.  Fig
ure 4 demonstrates how to set a network address under Linux.  First we switch to root 
on both computers using the substitute user [su] command.   Under Knoppix version 
3.3 and later the su command does not require a root password. Set the network ad
dress using the ifconfig command:       # ifconfig <interface> <net
work address> <network mask>. Do this for both computers (using differ
ent network addresses for each of course.  Make sure that the network address was cor
rectly set by issuing the command [ifconfig].  Ping the source computer to make 
sure you have a connection.  

15



DRAFT: NOT FOR DISTRIBUTION

Figure 4.  Viewing the network address of the subject’s computer

4. Before we can continue we need more specific information on the hard drives from the 
subject’s computer.  From a terminal command line run the command fdisk –l 
(That’s a lower case ‘L’). As illustrated in Figure 5, this command displays the number 
of hard drives connected; the number of partitions on each drive, and the formatting of 
each partition.  Figure 5 shows that our subject’s computer has a single 14GB hard 
drive.  (Note: Is our destination forensic drive large enough to hold this image?)  We 
note that the drive has five partitions /dev/hda1 through /dev/hda5. The fourth partition 
/dev/hda4 is an extended partition (as noted from the W95 Ext’d tag), and was created 
because drives can only have four primary partitions.   This system appears to be a 
dualboot Windows/Linux machine based on how the system is partitioned and our 
own experience.   /dev/hda1 if formatted NTFS and likely contains a Window’s operat
ing system, although we can’t guarantee this until we preview the image.

Figure 5.  Determining a drive’s geometry 

5. We have sufficient information to begin an acquisition over the crossover cable.  We 
use the netcat utility (www.atstake.com) to create the network connection between the 
two computers.  Netcat is a small, free utility available for several operating systems. 
Netcat reads and writes bits over a network connection.  The command to run on the 
forensics server is: 

# nc –l –p 8888 > evidence.dd

This sets up the listen process on the forensics serve prior to sending the data from the 
subject’s computer.  From the command line arguments (below) nc is the netcat exe

16

http://www.atstake.com/


DRAFT: NOT FOR DISTRIBUTION

cutable (it may be called netcat under SuSE); The –l argument (a lowercase ‘L’) indi
cates listen for a connection; The argument –p specifies the port on which to listen, 
and we redirect the output to a file name of our choosing, here evidence.dd. If we don’t 
redirect to a file then the output is directed to the standard output, the screen. 

6. On the subject’s computer we use the dd command to read the first partition: 

#  dd if=/dev/hda1 | nc 192.168.0.2  8888 –w 3

We pipe the output of the dd command to netcat, which sends the bits over the net
work to the specified network address and port on our listening forensic computer.  The 
argument –w 3 indicates that netcat should wait 3 seconds before closing the connec
tion upon finding no more data.

The time required to create a forensic image depends upon several factors, including the 
size of the source media, the speed of the connection (a directly connected IDE versus 
network acquisition), and the speed of the computers’ hardware.  Creating a forensic image 
of a floppy takes only a few minutes, whereas a 60GB hard drive will take several hours.

After we create the image we must verify its integrity.  We can calculate the hash of the 
source hard drive by issuing the following command from the subject’s computer: 

   # md5sum /dev/hda1 | nc 192.168.0.2 8888 –w 3

This command calculates the MD5 hash of the source hard drive and pipes the results over 
the network to our forensic server.  We capture this information by setting up a listening 
process on the forensic computer as demonstrated in the first command below:

   # nc –l –p 8888  >> evidence.md5

The command 

   # md5sum evidence.dd >> evidence.md5

calculates the MD5 hash of our forensic image and appends it to the previously created 
MD5 file.  The “>>” command appends the output of the command to an existing file. 
WARNING: If we were to use a single “>” the file evidence.md5 would have been 
overwritten by the output of the command, rather than appended.  

If our hashes match then we can assume success in our imaging process.  We are now 
ready to begin an analysis of our image.  

Analysis of a Forensic Image

Computer forensic procedures can be somewhat artificially divided between logical analy
sis and physical analysis.  A logical analysis views the evidence from the perspective of 
the file system as in Figure 6.  

17



DRAFT: NOT FOR DISTRIBUTION

Figure 6. Forensic image preview under Knoppix 

The investigator can use graphical tools, e.g., file managers, file viewers, etc., that are nor
mally used on a computer.  In contrast, a physical analysis views the forensic image from a 
purely physical viewpoint  there is no file system to consider per se. Because physical 
analysis does not view the image from the perspective of a file system it requires the use of 
a hex editor and similar tools.  

Logical and physical analyses are discussed in turn below.  First we provide readers with a 
description of the drive which will be important in understanding aspect of both physical 
and logical analysis.  

Drive Geometry

Figure 7 is a very simple, abstract model of a single magnetic disk.  The single disk is 
called a platter. A hard drive will consist of multiple platters stacked on top of one another. 
Each platter is divided into a number of tracks.  A cylinder is the column of two or more 
tracks on two or more platters (Nelson, et al., 2003).  A head is a device that reads and 
writes data to a platter.  Each track is divided into multiple sectors.  Sectors are created via 
lowlevel formatting at the factory and are commonly 512 bytes in size.  

18



DRAFT: NOT FOR DISTRIBUTION

Figure 7. Drive geometry

Highlevel formatting places a file system on the disk.  In the abstract, a file system is 
composed of a table to track file metadata (name, size, permissions, etc.), and an index of 
free disk space. File systems operate on specifically size units of disk space.  These units 
are called clusters in Windows, blocks in UNIX, or allocation units in the general.  Each 
cluster consists of one or more hardware sectors.  The size of a cluster will differ depend
ing upon the size of the disk.  For instance, on a highdensity floppy disk a cluster consists 
of a single sector.  For efficiency, clusters on larger disks will consist of multiple sectors, 
in multiples of two.  

Most modern file systems we discuss in this chapter have a default cluster size of four sec
tors, or 4096 bytes, although it is configurable. The default cluster size on a Windows 98 
FAT32 formatted file system is 64 sectors, or 32,768 bytes/cluster. Cluster size is impor
tant for investigators as larger cluster leave more residual forensic information on the disk. 
To understand why cluster size is important, let’s consider three conceptual categories of 
disk space:

1.  Allocated space is composed of clusters allocated to a file and that are tracked by the 
file system.
2.  Unallocated space is composed of clusters not in use by a file.  Unallocated space may 
contain residual information, e.g., from deleted files.  We provide greater detail on unallo
cated space, and how to recover files in unallocated space, in the Physical Analysis section.
3.  Slack space “is the space left over between the end of the data and the end of the last 
cluster or block” (Kruse & Heiser, p. 75, 2002).  Slack space may contain residual infor
mation, e.g., from files previously deleted but which have been partially overwritten.  We 
provide greater detail on slack space in the Physical Analysis section.

The procedures used to analyze the contents of each of the categories of space will differ. 
A logical analysis, which views our forensic image from the perspective of a file system, 
only examines information in allocated space.  In contrast, a physical analysis allows us to 
examine information in unallocated and slack space as well. 

19



DRAFT: NOT FOR DISTRIBUTION

Mounting the Image

We must mount our forensic image to access the file system contained therein.  Recall that 
mounting disk or image makes a file system available to the operating system’s kernel. 
Once an image is mounted, we can use any tools that we would normally use to work with 
files (search, view, sort, print, etc.).  We want to ensure that we do not (cannot) change our 
forensic image, so we mount our forensic image in readonly mode.  This guarantees that 
we do not change anything on our image as we are analyzing it.  

We use the mount command to mount our forensic image to an existing directory.  

# mount –t vfat –o ro,loop image.dd image/

We first create a directory called ‘image’ (which we could have named anything).  Next 
we execute the mount command with the following arguments:  t specifies the type of 
file system on the image, here vfat (virtual FAT, the same as FAT only able to under
stand long file names of 256 characters).  The –o specifies options; here we want to mount 
the image readonly (ro), and we specify loop to interpret the image as if it contains a 
file system.  The next arguments are the image to mount (image.dd), followed by the di
rectory on which to mount the image (image/).  If we receive no error message the image 
should be mounted.  

Depending upon the situation, it may be desirable to create a list of all the files contained 
on a disk.  (Several law enforcement personnel have relayed stories where a prosecuting at
torney demanded a list of all files on a disk, so this does occur in practice.  This procedure 
is also listed as an important forensic procedure on the IACIS site.)  We can create a list of 
files and their associated hashes with the file and md5sum commands:    

# find / type f –print0 | xargs 0 md5sum > /evidence/files.md5

find starts searching for regular files at the root directory, and pipes a list of the files as 
a single line (via the –print0 argument) to the md5sum command.  The results are di
rected to a file – not in a directory on the mounted image of course  for safe keeping. 
Here is a snippit from the files.md5 file.

82f28b86ed26641a61a0b7a3ee0647a0  ./agenda.doc
093aa48b0b7ae587b9320ada28ae600a  ./suzy.doc
a6fff9e1af9393d7cb1d367f407250a0  ./1034.md5
3fe0b92fd2e93aa125e7d1a2c9508963  ./foo.txt
b9e5e46186f9e92d908feccf2aa2dd82  ./folder/.foo
e65ad7ea32ec3c21a4eb5e7296c1aa0c  ./folder/Yahoo.aba.txt
7349b1a5429cb4a7b36796444eb88528  ./folder/2004_03_01_Minutes.doc
31efc94982e64ec04a30768fe799f3fb  ./folder/grandmaletter.txt
4ef2b14aa970dc14bb260dcd7ba67ba5  ./folder/school.ppt
23958202e2e750090d60f26911842722  ./folder/.hiddenfile
8dad5d4b67ecdd7a0ba5d0d943edabbb  ./bagheera.txt
0c8fb94c2b437896aa2d36ba7d3a2cab  ./list.of.words

Once our image is mounted readonly we can conduct searches, view or print the files, and 
treat the contents of the image as if it were a live mounted disk, without worrying about al
tering any files on the image because we mounted our image in readonly mode.

We can unmount the image using the umount command (note: not unmount,):

20



DRAFT: NOT FOR DISTRIBUTION

# umount image/

Reducing our Search Space

What forensic procedures do we perform first?  The answer is partly determined in part by 
the circumstances of our investigation.  If we are investigating someone for distributing 
child pornography then the primary evidence will be graphical images.  (There may be oth
er important evidence that should not be overlooked, including emails, electronic docu
ments, etc.)  In contrast, an EBay Internet fraud case we may be more concerned with 
email messages, electronic documents, and the contents of Internet Browser history and 
temporary files.  Let the circumstances dictate the approach.

Simple cases where we know exactly what evidence we are looking for may take a half 
day.  Complicated cases involving multiple hard drives and where we are not exactly sure 
what constitutes evidence may take weeks or even months.  We want to make the best use 
of our time.  The first activity is to distinguish which files are of probative value and which 
are not.  The reason is that most computers contain anywhere from 10,000 to hundreds of 
thousands (or more) files.  At some point we will be forced to conduct a manual analysis of 
scores of files.  We can make efficient use of our time if we can reduce to a manageable 
size the number of files we must manually analyze.  Computer forensics is a very tedious 
and time consuming task, and therefore the more we can use our tools to automate the pro
cess of identifying potential evidence the better.  One automated way of filtering files is 
through a hash analysis.  

Hash Analysis

A hash analysis compares the hashes of the files to a set of hashes of files of a known con
tent.  Files in a hash set typically fall into one of two categories known or notable.  Known 
files are files that can be ignored, such as typical system files (iexplore.exe, winword.exe, 
explore.exe, and so on). Notable files are ones that have been identified as illegal or inap
propriate, such as hacking tools, pictures of child pornography, and so on.   A hash analy
sis automates the process of distinguishing between files that can be ignored while identi
fying the files known to be of possible evidentiary value.  Once the known files have been 
identified then these files can be filtered.  Filtering out the known files may reduce the 
number of files the investigator must evaluate by half or more.

Hash analysis may be useful in an organizational setting in determining if there is any cor
porate espionage.  Companies may be concerned that insiders are emailing intellectual 
property to competitors.  Company IT staff could make a hash set by hashing all critical in
tellectual propertyrelated documents.  These hashes could then be compared against the 
hashes of files on the employees’ computer to determine if the documents are located on 
the disk. (Note: before doing this consult legal counsel as there are legal ramifications for 
this type of activity.)

Recall that only a file’s contents, not its metadata, are used in calculating a file’s hash val
ue.  (It is important to understand this point as subjects will try to hide evidence by chang
ing various file attributes such as files’ names, attributes, etc.)  We conduct a small experi
ment to demonstrate this claim for the readers.  We take a file and make three copies of it 
[1], [2], [3]).  We change the first file’s name [4], the second’s owner and permissions [5], 
[6], and leave the third unchanged.  We then calculate the hash value for all three files [7]. 
Note that the hashes are the same.  This fact is helpful when subject’s have changed files’ 

21



DRAFT: NOT FOR DISTRIBUTION

names, e.g., the notable files described above, in order to hide their true content and identi
ty, as we will demonstrate shortly

[1] jpc@simba:~> echo 'hello world\!' > file.1
[2] jpc@ simba:~> cp file.1 file.2 
[3] jpc@ simba:~> cp file.2 file.3
[4] jpc@ simba:~> mv file.1 file.changed
[5] jpc@ simba:~> chown jpc.users file.3
[6] jpc@ simba:~> chmod 751 file.2
[7] jpc@ simba:~> md5sum file.changed file.2 file.3
    7cf0564cb453a9186431ee9553f7f935  file.changed
    7cf0564cb453a9186431ee9553f7f935  file.2
    7cf0564cb453a9186431ee9553f7f935  file.3

To perform a hash analysis we need to specify a list of MD5s.  In this instance say we are 
interested in finding several known bad files, including several files from a rootkit as well 
as several illegal images.  Here are the MD5s that compose our file (KNOWN.BAD) of 
notable files:

f53ce230616c1f6aafedf546a7cc0f0f  Trojan ps
77f7628ee6fa6cd37ee8b06278149d1d  Trojan netstat
64a3877b3105cd73496952c1ef8f48e8  Trojan ls
41791681dff38e3a492c72d3e7335f82  Trojan lsof
bbf3aeb654477c4733bddf9a6360d2c5  Illegal Image
2eff0db0a3cac3fc08add30e21257459  Illegal Image
d297c866310377f10b948d53b798c227  Illegal Image  

We then run md5deep (md5deep.sourceforge.net) against all of the files in the directory, 
specifying the file KNOWN.BAD file for comparison.

pc@simba:~/chapter.stuff> md5deep r m KNOWN.BAD *
/image/chapter/.x
/image/chapter/misc/.y
/image/chapter/misc/preview.png
/image/chapter/misc/stuff.java
/image/chapter/misc/subset/bar
/image/chapter/preview.png
/image/chapter/large.jpg
/image/chapter/README.txt

The –r arguments indicates that md5deep run recursively (recurse through directories). 
The –m argument indicates the file containing the list of known files. Note that this list 
may contain either known good (e.g., Windows system files), or known bad files (hacker 
tool kits, illegal images, etc.).

Md5deep reads in the list of known hashes and then proceeds to hash each file in the path 
indicated at the command line.  It compares the file’s hashes with the contents of the list of 
known hashes. If a match occurs, it lists it on standard out (the screen).  This procedure is 
essentially how all commercial forensic applications hash analyses function.  As demon
strated above, md5deep found all of the files on the list of known hashes.  Note that it ap
pears that someone has changed the names of some of the notable files as a means of hid
ing their identity.  

The National Institute of Standards and Technology (www.nist.gov) develops and main
tains a very large set of hashes called the National Software Reference Library. 
(www.nist.gov/nsrl )  The NSRL contained over 6,000,000 hashes as of early 2004.  An

22

http://www.nist.gov/nsrl
http://www.nist.gov/


DRAFT: NOT FOR DISTRIBUTION

other large hash set is the Hashkeeper hash set, which can be downloaded at www.hash
keeper.org.  An investigator or IT staff can build a custom hash set easily by using the pro
cedures outlined above and elsewhere in this chapter, based on the companies need to pro
tect intellectual property, 

Signature Analysis

A signature analysis is an automated procedure for identifying potential evidence.  A file  
signature is a header or footer (or both) within a file that indicates the application associat
ed with a typical file, i.e., or the ‘type’ of file.  For instance, we opened three files in a hex 
editor (Figure 8): a Word document, a JPG graphic, and an Adobe Acrobat File.  The sig
natures (in hexadecimal) are: 

• 25h 50h 44h 46h for Adobe Acrobat Reader files (PDF).
• FFh D8h FFh, for JPEG graphical files; and
• D0h CFh 11h E0h A1h B1h 1Ah E1h for Microsoft Office files;

(Numbers in hexadecimal format are distinguished from decimal format by or appending 
with an h.)    

Figure 8.  File signatures for three files 

File signatures are useful for evaluating whether a subject is attempting to ‘hide files in 
plain sight’ by changing file extensions.  For instance, renaming a graphic naked_body.jpg 
to homework.doc can be effective in hiding a file from prying   albeit naïve  eyes.  A 
cursory examination of files in a file manager will not reveal the fact that the homework.
doc file is not a Word document but rather a graphical file.  To make matters worse, Win
dows Explorer will happily display the graphical file that has a .doc extension with a Word 
icon, confirming to the user that the file is what it purports to be.  This is true even if we 
request a thumbnail view in Windows Explorer.  Only if the graphical file has a graphical 
extension (e.g., GIF, BMP, PNG, JPG, etc.) will it display as a graphical thumbnail.

How does an investigator find these ‘hidden’ files?  We simply compare the file’s exten
sion with its corresponding file signature.  If the two match, then no effort was made to ob
scure the file type.  If there is a mismatch between the extension and signature, then the file 
should be exposed to closer examination.

23

http://www.hashkeeper.org/
http://www.hashkeeper.org/


DRAFT: NOT FOR DISTRIBUTION

To illustrate how simple a hiding technique this is, the Figure 9 is a directory listing in 
Windows Explorer that shows files with several different extensions.  We changed the ex
tensions of several files to disguise their true identity. Can you tell which files were 
changed?

Figure 9.  Viewing the contents of a floppy disk under Windows Explorer

The file command uses several sources of information, including the files signature, to 
verify a file’s type. The example below illustrates the use the of the file command 
against the files from Figure 9 above.  
 
jpc@simba:~/chapter.stuff/> file *
02_23_Agenda.doc:              Microsoft Office Document
2004_02_23___Minutes.doc:      Microsoft Office Document
2004_03_01_Minutes.doc:        Microsoft Office Document
cat.jpg:                       PDF document, version 1.3
EFE_Manual_English_rev418.pdf: PDF document, version 1.3
file.script:                   empty
grandmaletter.txt:             Microsoft Office Document
school.ppt:                    JPEG image data, JFIF standard 1.01
Yahoo.aba.txt:                 raw G3 data, bytepadded

We ran file is run against every file in the current directory.  We then manually com
pared the extensions against the known file type.  (We could create a script to do this for 
us; however, this is beyond the scope of this chapter.)  For example, the file course.doc ex
hibits the Word extension, and the signature confirms it is a Microsoft Office Document. 
The file grandma.txt exhibits a text file extension; however, the signature indicates that it 
is a JPG graphical file.  The file homework.doc has a Word extension, but its signature also 
indicates it to be a JPG graphical file.  The remaining files appear to be what they claim.  

How much credence should we put in the extension to denote the type of file? The simple 
answer is: none.  As demonstrated, changing the file extensions is a simple, and often suc
cessful, means of hiding inappropriate or illegal files.

Searching a Forensic Image

Two common search tasks involve searching for specific keywords within documents, or 
searching for particular types of files (e.g., graphical files in a child pornography case, or 
Excel, Quicken, or Money files in a moneylaundering case.)  We first describe how to 
conduct keyword searches, followed by searching for particular types of files.

Keyword Searches

24



DRAFT: NOT FOR DISTRIBUTION

Once the investigator reduces the search space by identifying and filtering known files, as 
well as identified suspect files via signature analyses, she can turn her attention to search
ing for specific keywords within the forensic image.  

Below we use the grep utility to search for keywords on the image.  grep has the capability 
to search for multiple keywords simultaneously.  This is accomplished by creating a text 
file containing a list of keywords, and then using the –f flag to indicate that we are using a 
file, instead of a single keyword, as input to grep.  In this example our keyword text file 
contained the following key words, one per line, with no trailing blank line: marijuana, 
crack, crank, cocaine, oxycontin.

Again, it is important that there is no blank line at the end of our keyword file.  Had we not 
used a file for our keywords we would have had to perform five separate single keyword 
searches.  

Now we are ready to search our forensic image for the keywords. We execute the follow
ing command:

   # grep –i –r –f keywords /image/* > /evidence/grep.results

The flags are interpreted as follows:
• i indicates case insensitive search, thus ‘cocaine,’ ‘COCAINE.’ and ‘CoCainE’ 

are the same.  
• r indicates a recursive search, i.e., traverse all of the subdirectories beneath the 

current directory.
• f indicates the next parameter is the file containing our keywords.

We redirect the results of our grep search into a file so that we can more closely analyze 
the results and print it out if need be.  Abbreviated results are displayed below:

/mnt/evidence/bruce: WASHINGTON, D.C.  U.S. Representative issued the following state
ment regarding the GAO Report to Congress titled, OxyContin Abuse and Diversion and 
Efforts to Address the Problem:

/mnt/evidence/bruce:This report reinforces what I suspected all along:  Purdue Pharma 
has engaged in highly questionable practices regarding the marketing of OxyContin, leav
ing a plague of abuse and broken lives in its path....

/mnt/evidence/dynamic.dll:Cocaine Anonymous is a fellowship of men and women who 
share their experience, strength and hope with each other that they may solve their com
mon problem and help others to recover from their addiction. The only requirement for 
membership is a desire to stop using cocaine ...

/mnt/evidence/homework.doc:OxyContin is a trade name for the drug oxycodone hy
drochloride. Manufactured by Purdue Pharma L.P., OxyContin is a controlledrelease 
form of oxycodone prescribed to treat chronic pain. When used properly, OxyContin can 
provide pain relief for up to 12 hours ….

/mnt/evidence/todo:marijuana: facts for teens…

25



DRAFT: NOT FOR DISTRIBUTION

/mnt/evidence/todo:teen boy qoute that reads I used to be real athletic. When I started us
ing drugs, I just stopped playing all together because I thought I had more important  
things to do. Q: What are the shortterm effects of marijuana use?... 

/mnt/evidence/todo:A: The shortterm effects of marijuana include:…

grep found instances of the terms marijuana, cocaine, and OxyContin in files contained 
on our forensic image.  Note that there are several different cases used in the spelling of the 
terms (e.g.., ‘Cocaine,’ ‘cocaine,’). A case sensitive search would have failed to find 
several instances of the keywords, therefore, it is usually best to include the –i flag if case 
does not matter.     

Finding Files by Type

Say we have been asked by law enforcement to find all graphics files on a subject’s hard 
drive that contains over 500,000 files.  What would be the most efficient means of 
conducting this search? Clearly we want to automate as much of the search as possible. 
We could search for files with the appropriate graphical file extension, for instance:

# find / type f \( name ‘*.gif’ –or –name ‘*.jpg’ –or –name ‘*.bmp’ –or 
–name ‘*.png’ \)

This command finds all files with the GIF, JPG, or BMP extension.  This command would 
not find the files with changed extensions, however.   One way find graphic files whose 
extension has been changed is to combine three GNU utilities:  find, file, and grep. 
The best way to explain the combined use of these commands is through a demonstration.

Our goal is to find all graphical files regardless of extension.  We want to do the following:

Step 1: Use the find command to find all regular files on the hard drive (as opposed to 
directories, special devices, and so on).  Pipe the results of this command to the:
Step 2: file command, which returns the type of file using header information.  Pipe the 
results of this command to the: 
Step 3: grep command to search for graphicalrelated keywords.  

Here is our command to perform the steps above:

# find /image –type f ! \( name ‘*.jpg’ –or –name ‘*.png’ –or –name 
‘*.bmp’  –or –name ‘*.tiff’ \) –print0 | xargs 0 file | grep –f 
keywords.txt

The /image argument specifies the directory in which to start.  The argument –type f 
specifies that are we interested in regular files as opposed to special files such as devices or 
directories.  The find command is recursive by default so it is essentially recursively 
finding all files beginning at the /image directory.  The exclamation mark (!) modifies the 
contents within the parenthesis, and says that we want to process files whose extension is 
not *.jpg, or *.png, or *.bmp, or *.tiff.  The –print0 is a special formatting command 
that is required to format the output of find for piping to the next command.  

We pipe the results of find to xargs 0, which hands each file from the previous 
command to file.  file evaluates each file’s signature, returning a description of the 

26



DRAFT: NOT FOR DISTRIBUTION

type of file.  These results are piped to grep to search for the specific keywords that are 
contained within the keywords.txt file.  The arguments for grep include –i for case 
insensitive search, and the –f keywords.txt, the file containing the list of keywords: 
‘PNG,’ ‘GIF,’ ‘bitmap,’ ‘JPEG,’ and ‘image.’

The results are as follows:

# find /image –type f ! \( name ‘*.jpg’ –or –name ‘*.png’ –or –name 
‘*.bmp’   –or –name ‘*.tiff’ \) –print0 | xargs 0 file | grep –f 
keywords 

./agenda.doc:          PC bitmap data, Windows 3.x, 382 x 61 x 24

./suzy.doc:            PNG image data, 571 x 135, 8bit/color RGB

./folder/.foo:         PC bitmap data, Windows 3.x, 536 x 177 x 24

./folder/school.ppt:   JPEG image data, JFIF standard 1.01

./folder/.hiddenfile:  PNG image data, 351 x 374, 8bit/color RGB, 

./bagheera.txt:        PC bitmap data, Windows 3.x, 536 x 307 x 24

./9.11.xls:            JPEG image data, EXIF standard, 10752 x 2048

./list.of.words:       PNG image data, 571 x 135, 8bit/color RGB

We found eight graphical files, including instances of JPEG, PNG, and Bitmap files.  Note 
each of the files found were graphical files with misleading file extensions.  What can we 
deduce from this result?  Because applications will not arbitrarily change an extension of a 
graphical file, an investigator might reasonably deduce that a user has manually renamed 
the files, possibly in an attempt to hide their nature.  This result is not incontrovertible, but 
would warrant further investigation.

Email Searches

Email is ubiquitous, supplanting regular mail as a preferred form of communication for 
many.  Email can be a rich source of evidence for many types of investigations.  

There are several email applications available in Windows, the most popular of which are 
Microsoft Outlook and Outlook Express, the latter of which is purportedly the most 
popular email client as it is comes with every version of Windows.  Microsoft Outlook is a 
fullfledged personal information manager that includes email, calendar, contact list, task 
list, and scheduler.  There are several, less popular, email applications available on other 
platforms, including Eudora, Netscape Mail, and Mozilla Mail.  Each of these applications 
includes an address book or contact list that may prove useful in an investigation.  

Some email applications store messages in proprietary binary formats, including Outlook, 
Outlook Express, and Eudora.  Outlook uses a proprietary format that is different from its 
sibling Outlook Express.  Netscape and Mozilla mail store mail in a non proprietary mbox 
format that is easily readable in a text editor.  

To conduct an email investigation we must locate the mailbox files.  The mailbox locations 
differ depending upon the version of Windows and the application used:

• Outlook Express
– Windows 2000/XP

• C:\Documents & Settings\<username>\Local Settings\Application 
Data\Identities\<unique string>\Microsoft\Outlook Express\

– Windows NT
• C:\winnt\profiles\<username>\Local Settings\Application 

27



DRAFT: NOT FOR DISTRIBUTION

Data\Identities\<unique string>\Microsoft\Outlook Express\
– Windows 95/98/ME

• C:\Windows\Application Data\Identities\<unique 
string>\Microsoft\Outlook Express

• Netscape/Mozilla Mail
– Windows 2000/XP

• C:\Documents & Settings\Application 
Data\Mozilla\profiles\<username>\<unique string>.slt\Mail

– Windows NT
• C:\winnt\Application Data\ Mozilla\ profiles\<username>\<unique 

string>.slt\Mail
– Windows 95/98/ME

• C:\Windows\Application Data\ 
Mozilla\profiles\<username>\<unique string>.slt \Mail

Outlook Express stores email messages and folders in files with a dbx extension. Each 
folder has a corresponding dbx file, whose name coincides with the folder’s name. For ex
ample, the outbox.dbx file corresponds to the Outbox folder (http://mailrepair.com/out
lookexpressrepair.html).  An investigator must use an application that understands the 
dbx proprietary format to extract the folders and messages in a humanreadable format. 
The simplest method is to copy dbx or pst files to another Windows machine that contains 
the Outlook application, and import the appropriate application, either Outlook Express 
(dbx files) or Outlook (pst files).

A second alternative is to use a non Microsoft application that understands the mailbox 
formats and has the capability of extracting the messages and folders.  For example, 
LibPST (http://sourceforge.net/projects/ol2mbox/) is an open source utility that converts 
messages from Outlook PST format to a standard mbox format.  In our experiments we 
used LibPST to extract the contents of the Outlook mailbox.  This demonstrates it is al
ways good to have a wide variety of tools in your forensic toolkit.  Below is a sanitized 
email that we recovered with LibPST.

From "Philip Craiger" Wed Jan  09:54:24 2004
XApparentlyTo: philip@craiger.net via web12824.mail.yahoo.com; Wed, 07 
Jan 2004 07:54:30 0800
ReturnPath: <philip@craiger.net>
Received: from lakemtao06.cox.net (68.1.17.115)
  by mta1vm3.mail.yahoo.com with SMTP; Wed, 07 Jan 2004 07:54:29 0800
Received: from craiger.net ([68.13.130.154]) by lakemtao06.cox.net
    (InterMail vM.5.01.06.05 20125312213010520030824) with ESMTP
     id <20040107155429.VISE24575.lakemtao06.cox.net@craiger.net>;
     Wed, 7 Jan 2004 10:54:29 0500
MessageID: <3FFC2BB0.2060702@craiger.net>
DispositionNotificationTo: Philip Craiger <philip@craiger.net>
Date: Wed, 07 Jan 2004 09:54:24 0600
From: Philip Craiger <philip@craiger.net>
ReplyTo:  philip@craiger.net
UserAgent: Mozilla/5.0 (Windows; U; Windows NT 5.1; enUS; rv:1.6b) 
Gecko/20031205 Thunderbird/0.4
XAcceptLanguage: enus, en
MIMEVersion: 1.0
To:  xxxxx.xxxxxxxx@SMU.CA, xxxxxxx xxxxxxx <xxxxxxx@xxxx.cas.usf.edu>
Subject: BIO
ContentType: text/plain; charset=usascii; format=flowed

28

http://mail-repair.com/outlook-express-repair.html
http://mail-repair.com/outlook-express-repair.html


DRAFT: NOT FOR DISTRIBUTION

ContentTransferEncoding: 7bit

Hi ya’ll,

I won’t be able to make it this Friday; I’m going out of town.

Philip

Web-based Email

Investigators are likely to encounter webmail, the most common of which are Yahoo Mail 
(my.yahoo.com) and Hotmail (www.hotmail.com).  Webmail messages are stored in html 
format with the extension html or htm and are thus readable with any web browser.  The 
messages that are downloaded from or uploaded to the Web are stored in the four Win
dows Temporary Internet Folders (discussed in more detail below).  

We conducted a series of experiments to determine the file names associated with each of 
webmail messages from Yahoo! Mail and Hotmail.  The results of our investigation are 
displayed in Table 2.  These names may be used in conjunction with the grep search to 
identify the use of webmail messages.

File Content Yahoo Mail Hotmail
Login page login[#].htm uilogin[#].htm
Home page Welcome[#].htm mhome[#].htm
Inbox/Folder ShowFolder[#].htm HoTMail[#].htm
View Message ShowLetter[#].htm getmsg[#].htm
Compose Message Compose[#].htm compose[#].htm

Table 2.  Yahoo Mail and Hotmail filenames.

We can use any web browser to view these html files.  In Figure 10 we opened a webmail 
message from our Temporary Internet Folders (note the message has been sanitized of 
names).

Figure 10.  Incoming HotMail Message saved in a Temporary Internet Folder 

29

http://www.hotmail.com/


DRAFT: NOT FOR DISTRIBUTION

Unless a suspect took overt means to remove these files from the Temporary Internet Fold
ers, we can easily access these files via a web browser.  

The Temporary Internet Folders may contain hundreds of files with an htm extension.  To 
find the relevant emailrelated files the investigator can open up each file in a browser and 
conduct a manual search, or use grep to search for the appropriate file names (see Table 2 
above).  Note that the terms ‘Yahoo’ or ‘Hotmail’ will appear somewhere in the email 
files.  We use this fact in our command below to search for files from Hotmail Mail.

To find all Hotmail files we use the following command line to show all of the related files 
in the Temporary Internet Folders.

linux:~/Temporary Internet Files/Content.IE5 # find . type f \( name 
'getmsg*.htm' or name 'uilogin*.htm' or name 'mhome*.htm' or name 
'HoTMail*.htm' or name 'compose*.htm' \)

./31n6dkxa/getmsg[1].htm

./31n6dkxa/compose[1].htm

./2l4z6jel/uilogin[1].htm

./ybcpq9sz/compose[1].htm

./ybcpq9sz/compose[2].htm

./ojavstch/compose[1].htm

./ojavstch/uilogin[1].htm

./ojavstch/getmsg[1].htm

The directories with the funny looking names are the Temporary Internet File folders.

The Windows Swap File

A swap file is virtual memory that is used as an extension of the computer systems RAM 
(whatis.techtarget.com).  Typically, the least recently used contents of RAM are paged out 
(i.e., swapped) to the swap file, and are read back into RAM on an asneeded basis.  The 
swap file can contain evidence that has been previously removed, even if the file was 
forensically wiped from a hard drive. Unless of course the swap file was forensically 
wiped, then the file within the swap is unrecoverable, although we may still find copies in 
unallocated or slack space.

The Windows swap file under Windows 9x/ME is named win386.swp and is typically 
found in the Windows root directory, although this may be changed by the administrator. 
Under Windows NT/2000/XP the file is named pagefile.sys and is typically found in the 
root directory (e.g., C:\), and again may be changed to a different location.

The swap file is a binary file.  We use the strings command along with grep to extract 
interesting information of possible evidentiary value.  The strings command reads in a 
file and extracts the humanreadable text of a certain length, the default of which is four 
characters.  In the example below we extract the humanreadable text, and then use grep 
to search for the string ‘hacker.’ Note that we request two lines of context using the –C 
argument, which gives us two lines before and after the actual search string.   There were 
approximately 25 hits extracted from the swap file.

linux:/jpc/chapter/windows # strings win386.swp | grep C 2 hacker

// lines deleted for brevity

30



DRAFT: NOT FOR DISTRIBUTION


ing latest amitis
/amitis/serv
immortalhackers.com
.I$I
lliume

fg32.exe
boot
hacker
syscfg32
BotV0.3

echo @echo off >>
ces\firewall
hackers and viruses
ControlSet\
\firewall.exe

iiiii
for WiNis       by Fking
root@hacker
\HATREDFIEND
/\/\ENDOFFILE/\/\

// lines deleted for brevity

I know what you did with your computer last summer…

Every time a user uses Windows Explorer or Internet Explorer access a file or web site, 
digital traces of these activities are placed on the hard drive.  Most of these artifacts are 
kept in index.dat files.  An index.dat file is a binary file that tracks user activities: files 
opened in Window’s explorer, web pages opened in Internet Explorer, and so on.

31



DRAFT: NOT FOR DISTRIBUTION

Figure 11.  Location of an   index.dat   file in Temporary Internet Folders  

Each time a file is accessed via Window’s Explorer (as shown in Figure 24) or Internet Ex
plorer, a record is placed in an index.dat file. 

Window’s uses several index.dat files to track various activities on the computer.  The lo
cation of these files will vary depending upon the version of Window’s used.  Table 3 
shows these locations.

Windows Locations
95/98/ME \Windows\Temporary Internet Files\Content.IE5\

\Windows\Cookies\
\Windows\History\History.IE5\

NT \Winnt\Profiles\<username>\Local Settings\Temporary Internet Files\Content.IE5\
\Winnt\Profiles\<username>\Cookies\
\Winnt\Profiles\<username>\Local Settings\History\History.IE5\

2000/XP \Documents and Settings\<username>\Local Settings\Temporary Internet Files \Content.IE5\
\Documents and Settings\<username>\Cookies\
\Document and Settings\<username>\Local Settings\History\History.IE5\

Table 3: Locations of index.dat files (adapted from Jones, 2003).

Index.dat files are binary files and therefore not in humanreadable format.  Pasco (www.
foundstone.com) is a small open source application that parses the contents of index.dat 
files, and outputs the results into a tab delimited file.  To illustrate, we ran pasco against 
the index.dat file from a system, redirected the output to a file that we subsequently im
ported into a spreadsheet application.

# pasco index.dat > evidence.txt

Figure 12.  A parsed   index.dat   file   

This index.dat file in this example was from the History.IE5 folder (see Table 3).  Each 
row in the spreadsheet is an activity record that includes the type of access, the URL 
(which can be a regular file or a web site), the modified and access times, filename and di
rectory (latter two not shown).  

This particular index.dat contains information on files accessed from either Windows Ex
plorer (the default file manager) or Internet Explorer, including:

• Files accessed and opened via Windows Explorer (Rows 4 through 9)
• Keywords used in searches over the Internet (Rows 10 and 11)

32

http://www.foundstone.com/
http://www.foundstone.com/


DRAFT: NOT FOR DISTRIBUTION

• URLs visited via Internet Explorer (Rows 12 through 15)

This index.dat file included over 487 files accessed within the last three weeks.  An inves
tigator can use the modified and last accessed times to determine the most recent date and 
time the user downloaded the file (modified time), as well as the last time the user visited 
the page or file (access time)

Cookies

According to www.cookiecentral.com: 

“Cookies are pieces of information generated by a Web server and 
stored in the user's computer, ready for future access. Cookies are 
embedded in the HTML information flowing back and forth be
tween the user's computer and the servers. Cookies were imple
mented to allow userside customization of Web information. For 
example, cookies are used to personalize Web search engines, to 
allow users to participate in WWWwide contests (but only 
once!), and to store shopping lists of items a user has selected 
while browsing through a virtual shopping mall.”  http://www.
cookiecentral.com/content.phtml?area=2&id=1

Unless a user’s browser security is set to high, cookies are automatically – and quietly  
placed on the user’s hard drive.  Most users may be unaware that these cookies are being 
placed on their hard drives.

The cookies directory contains the individual cookies as well as an index.dat that consists 
of the activity records for each of the cookies in the directory, as shown in Figure 13.  We 
used Pasco to parse the index.dat, the results of which are displayed in Figure 14. Note the 
activity records contain the cookies URL (from whence it came), the modified and access 
times, as well as the cookies file name.

Figure 13  Cookie’s directory 

# galleta "jpc@microsoft[1].txt > ms.cookie.txt

Figure 14.  Parsed  cookie file

33

http://www.cookiecentral.com/content.phtml?area=2&id=1
http://www.cookiecentral.com/content.phtml?area=2&id=1
http://www.cookiecentral.com/


DRAFT: NOT FOR DISTRIBUTION

As shown in Figure 14 the cookie is partitioned into six or more pieces of information, in
cluding: a) the web site from which the cookie came; b) a variable and c) its associated val
ue (which will differ on its meaning depending upon the web site), d) the creation time of 
the cookie, and its e) expiration date and time.  Here the variable is apparently the GUID 
(globally unique identifier) for my copy of the Windows OS I’m running, along with a 
hash of its value.

Care should be taken when interpreting cookies to infer user activity as cookies may be 
placed on user’s hard drive from thirdparty sources, i.e., from sources other than the web 
site visited. 

Cookies can be found in the following locations:

Windows Locations
95/98/ME \Windows\Cookies\
2000/XP \Documents and Settings\<username>\Cookies\

Table 4.  Cookie file locations

Deleted Files and the INFO2 File

Files that are ‘deleted’ through My Computer, Windows Explorer, a Windowscompliant 
program, or any other way except from the command line, are removed from their original 
directory, and a copy placed in either the Recycled Bin (FAT32) or Recycler Bin (NTFS). 
A binary file named INFO2 within each bin tracks important information about the deleted 
files, and may be an important source of evidence should the contents of deleted files be 
overwritten.  

According to Microsoft (http://support.microsoft.com/default.aspx?scid=kb;en
us;136517&Product=w95), the following occurs when a file is deleted by one of the means 
described at the beginning of this section:

1. The deleted file is moved to the Recycled/Recycler Bin.
2. The following details are recorded in the INFO2 file for each deleted file: 

a. The index, i.e., the order in which the file was deleted
b. The date and time the file was deleted 
c. Drive from which the file was deleted
d. The full path 
e. The file size

3. The deleted file is renamed, using the following syntax: 

D<original drive letter of file><#>.<original extension> 

The <#> is the order in which the file was placed in the Bin.  For example, a file named 
‘c:\My Documents\Florida.doc’ is the first file placed in the Recycle Bin, it’s name is 
‘DC1.doc.’  A file named ‘Beatles.MP3’ deleted next would be renamed ‘DC2.MP3.’  If 
the files were on the Z drive, they would be renamed DZ1.doc and DZ2.MP3, respectively.

The length for an INFO2 record under Windows 95/98/ME is 280 bytes and 800 bytes un
der Windows NT/2000/XP (Sheldon, 2002).  When a user empties the Recycled/Recycler 
bin, the files within the bin are removed, and the INFO2 file’s contents are deleted.  

34

http://support.microsoft.com/default.aspx?scid=kb;en-us;136517&Product=w95
http://support.microsoft.com/default.aspx?scid=kb;en-us;136517&Product=w95


DRAFT: NOT FOR DISTRIBUTION

Under NTFS each user is tracked by a security ID (or SID) which is how the computer 
refers internally to each user.  This allows user activity to be tracked by the operating sys
tem. Under NTFS, every user has a folder named after his/her SID in the Recycler Bin. 
Each of the folders will have its own INFO2 file.

Figure 15 shows a Recycler Bin’s contents from the command line.  (We must demonstrate 
this from the command line as a user’s SID is not displayed when viewed with any of Win
dow’s utilities).  Note the SIDnamed folder.

Figure 15.  Recycler Bin on Windows XP <recycler.tif>

The times displayed are the last modification times for each file, not the time the file was 
created in the bin.  Recall the deleted times are kept in the INFO2 file.

We can use rifuiti (www.foundstone.com) to interpret the binary contents of the INFO2 
file.  Rifuiti takes as an argument the name of the INFO2 file.  We redirect the results to a 
tabdelimited file that we can then import into a spreadsheet application (as demonstrated 
in Figure 16).

# rifuiti INFO2 > deleted.txt

35

http://www.foundstone.com/


DRAFT: NOT FOR DISTRIBUTION

Figure 16.  Contents of INFO2 file viewed in a spreadsheet 

Of what use is the INFO2 file?  Even though its contents are deleted when the bin is 
emptied, we may be able to recover the contents from unallocated space during a physical 
analysis. We may even be able to recover the files that were emptied from the bin.  (We 
deal with the recovering of information from unallocated and slack space later in the 
chapter.)  Note that we are still able to extract important information from the INFO2 file 
concerning deleted files, including: a) the date and time the file was deleted, b) the drive 
on which the file was deleted, c) the files original path, and d) the files size.

Application Residual Files

Many Windows applications create temporary files that are usually written to the hard 
drive.  These temporary files are usually deleted from the hard drive once the application 
closes, or the user closes the file manually.  As we have previously noted, deleting files 
only removes the pointer to the file, and marks the clusters occupied by the file as avail
able: the information in the clusters is still recoverable until overwritten.  (Note that when 
temporary files are deleted by applications they are not moved to the Recycler/Recycled 
Bins as described in the previous section).

Microsoft Office applications are very good about creating temporary files.  Microsoft 
Word, for example, creates temporary files that consist of the contents of previous versions 
of a file.  Temporary files are created when Word’s autosave feature is turned on, or when 
the user manually saves the file.  Word creates temporary files to provide some fault toler
ance should Word or the operating system crash.  In later versions of Office, if Word finds 
one of these files it recognizes this as an anomaly, and offers to recover the file.  

Figure 17 illustrates several temporary files that Word created as we were editing a docu
ment.   This explains why an investigator might find dozens of residual copies of the same 
text in unallocated space.

Figure 17.  Microsoft Word Temporary Files

If an application or operating system misbehaves it may leave temporary files (usually, but 
not necessarily, noted with a TMP extension) in allocated space on the hard drive.  We can 
use the find command to search for these files.  

# find / –type f \( name ‘*.TMP’ –or –name ‘*.tmp’ \) 

36



DRAFT: NOT FOR DISTRIBUTION

This command will find all files with the *.TMP or *.tmp extension.  Of course this only 
works if the temporary files are in allocated space (i.e., have not been deleted).  Once the 
application closes these temporary files will be deleted by the application.   If we need to 
identify temporary files that have been deleted we can use two procedures.  The easiest 
method is if we know part of the text of the document, we can use grep to search our 
forensic image (that is, unmounted image) for that text using a physical analysis.

Say we are told that subject created a counterfeit document using a word processor on his 
computer.  We are also told the subject has a ‘wipe’ utility on the computer, and that a cur
sory examination of the computer showed no copies of the letter.  As investigators we as
sume that the word processor diligently created temporary files of the counterfeit docu
ment.  We can use parts of the threatening letters in a keyword search to see if we can re
cover some of the temporary files.
 
A significant content of a hard disk will be unreadable binary data.  Therefore, let’s first 
extract all of the humanreadable text from our forensic image.  We use the strings 
command to extract the humanreadable text from our forensic image.  

# strings evidence.dd > /evidence/evidence.str

# grep –b –I –C 1 “Philip” evidence.str > /evidence/search.philip

strings extracts strings of size 4 bytes or greater in the 7bit ASCII range.   We redi
rect the results to a file, which we then use in our grep search.  The –b flag in the grep 
search specifies that we want the byte offset printed for each result, i.e., where in the file 
the match occurred.   The –C 1 specifies that we want one line of context before and after 
our match.  

Figure 18 shows the results five matches at byte offsets 41260, 41404, 41786, 45606, 
49673, with one line of context before and after each match.  If we wish to further explore 
text associated with one of the matches we can use the byte offset of the file to extract 
more of the text.  

Figure 18. Results of grep search.<grep.search.results.tif>

37



DRAFT: NOT FOR DISTRIBUTION

Say we are interested in the text at offset 41786, which appears to be a letter of some sort. 
We can use dd to extract the text as demonstrated in Figure 32 below.

Figure 19. Command line to extract specific strings

The important arguments are bs, skip, and count.  We set our block size to one so that we 
can ask for a specific number of characters (i.e., bs=1 is equal to one character).  We want 
to start extracting the data a little before our match at byte offset, so we chose to start at 
41700. Note we specify offset 41700 because our block size is one.  If we had used the de
fault block size of 512 bytes we would be starting at offset 41700 x 512 or 21,350,400, 
definitely not what we wanted.  The block size also refers to our count: we are extracting 
750 characters (not 750 x 512).   The 750 characters we extracted are show in Figure 20 
below.

Figure 20. Results of string extraction

As you can see through several demonstrations dd is a very useful tool.

UNICODE

There is a potential problem because text is represented in various formats.  ASCII text is 
represented in 8 bits, which limits the number of characters it can to represent 256, i.e., 28 

= 256.  UNICODE is a 16bit character representation that was created to overcome this 
limitation, and to allow for the ability to represent characters from various countries, given 
it can now hold 65,536 (216 = 65,536).  So ASCII text is represented in one byte, whereas 
UNICODE is represented in two bytes. The difference between the same text represented 
in ASCII and UNICODE can be seen in Figures 21 and 22.

Figure 21.  8bit ASCII text 

38



DRAFT: NOT FOR DISTRIBUTION

Figure 22. 16bit UNICODE text 

The information for the figures was extracted from an INFO2 file.  

The normal strings command as run above will not find the text in Figure 22 given that 
each character is represented by two bytes.  In order to extract UNICODE characters the 
flags –b l (that’s a lowercase ‘L’) must be used.   

The command to extract all UNICODE characters from a file named “evidence.txt” would 
be:

# strings –a –b l evidence.txt > /evidence/evidence.unicode

Print Spool Files

When a file is printed in Windows it is first converted to an enhanced metafile (EMF) – a 
graphic image  before it is printed. This file is written to the hard drive in the root Win
dows directory under \system32\spool directory (Windows XP and 2000).  (The default 
print spool directory can be changed by changing the values in Windows registry).  There 
are two files associated with each file printed: a header file with the extension SHD and the 
actual graphic image (EMF format) with the extension SHL.  The SHD file contains infor
mation on the name of the file being printed, the name of the file to which it was printed, 
and the time and date stamp.  The SHL file is the actual graphical file.  If we can recover 
the SHL file we can print it.  Collectively, these files are called print spool files, and 
demonstrate that particular documents were once printed from the computer.  These files 
are typically found in the directory:
 
c:\<Windows root directory>\system32\spool. 

If a user creates a document in Windows, prints the document, then uses a forensic wipe 
utility to write zeros over the clusters composing the file, an investigator can still access 
the document by recovering the deleted print spool files.

Once the file has been printed Windows will delete the header and EMF file.  Until over
written, the header and EMF file will remain in unallocated space, and are recoverable 
with the techniques demonstrated later.  However, if something happens and the file fails 
to print, the header and EMF file will remain in the directory.   A grep search for files 
ending in ‘*.SHD’ or ‘*.SHL’ will find these files.

39



DRAFT: NOT FOR DISTRIBUTION

Physical Analysis

A logical analysis can only examine the contents of allocated space: It cannot find files in
tentionally deleted by users, deleted temporary files, deleted print spool files, or other 
forms of information found in unallocated or slack space.  The investigator must conduct a 
physical analysis to examine ambient information in the unallocated and slack space.  

A physical analysis involves analyzing our evidence from a physical perspective, i.e., with
out regard to a file system.  Thus, we do not mount our forensic image, but instead use a 
hex editor to view the forensic image as a single, flat file.  This will permit us access to all 
categories of disk space: allocated, unallocated, and slack.  Clearly this is advantageous as 
often a great deal of evidence may be found in unallocated and slack space.  The draw 
back is that we are no longer dealing with a file system, and therefore, our analysis can be 
very tedious and complex, as we will see.

Figures 23 and 24 show physical view of the floppy disk image that we created earlier. 
(Legend: the far left side of the figure shows the offset from the beginning of the file in 
hex; the middle section is the contents of the file in hex at the offset; the far right side is 
the ASCII representation of the contents of the file at that offset.)

Figure 23. Root Directory of the FAT formatted floppy disk <root.directory.tif>

Figure 23 displays part of the root directory of a FAT formatted floppy disk image as 
viewed from a hex viewer.  A root directory is like a table of contents of a file system, it 
tracks metadata on each file including the filename, file size, time and date of creation, 
modification, and last access, where the file starts on the disk, etc.  On our floppy disk each 
root directory entry is 32 bytes, or two lines in the Figure 23.  The lines at offset 2700 
through 2710 are the root directory entry for the file KEYWORD.GIF. 

40



DRAFT: NOT FOR DISTRIBUTION

Figure 24.  FAT12 data area: Physical sector 33logical cluster 2 

Figure 24 shows the beginning of the data area which starts at offset 4200h.  Note that the 
contents of this first sector of the data area contain the file signature FFh D8h FFh 
which is a JPEG graphic signature.  Note that the data area on a floppy starts are physical 
sector 33, which translates to logical cluster 2.  This will be explained in more detail in the 
section “Recovering Deleted Files” below.

From an examination of the root directory entry displayed in Figure 23 we can tell that the 
file at offset 26002610 has been deleted.  However, Figure 24 shows that the file still re
sides on the disk. Two questions come to mind. First, how did we know that the file had 
been deleted from viewing the root directory? Second, can we recover the deleted file dis
played in Figure 24?

What Happens when a File is Deleted?

Before we explain what happens to a file when it is deleted it is important to understand 
parts of a file system and how an operating system tracks files.

A disk formatted with a version of FAT is comprised of a reserved area and a data area. 
The reserved area consists of the following components:

• The boot record is the 1st sector of the disk.
• 1st file allocation table
• 2nd file allocation table (a backup to the first)
• Root directory
• Data area (on a floppy, it begins at physical sector 33/logical cluster 2. This will 

differ depending upon the size of the disk).

The root directory entry for a file contains information on the starting cluster of the file. 
The remaining clusters that compose the file are kept in the file allocation table or FAT. A 
FAT is merely a singlylinked list, as demonstrated in Figure 25. 

41



DRAFT: NOT FOR DISTRIBUTION

Figure 25. FAT Explanation

Figure 25 illustrates an abstract model of a file allocation table.  The numbers above the 
boxes indicate the FAT entry for a particular logical cluster.  The numbers in the boxes are 
pointers to the next cluster in the file.  For instance, the FAT entry for cluster two contains 
a three, which is a pointer indicating that the next cluster in the file can be found at cluster 
three.  FAT entry three contains a four indicating that the next cluster in the file is at logi
cal cluster four.  An FF in this instance is an endoffile marker, indicating that this is the 
last cluster the file uses.  If we assume that this is a FAT12 floppy disk, where each cluster 
is 512 bytes, we see that the file has a maximum size of 3 x 512bytes or 1,536 bytes.  Be
cause clusters two, three, and four are allocated to a file in the FAT, we know that the file 
resides in allocated space, and should appear in a logical analysis.

FAT cluster entry five has a single FF, indicating that the beginning and ending cluster for 
this file is logical cluster number five, and has a maximum size of 512 bytes.  This file too 
is in allocated space, and should appear in a logical analysis.

FAT cluster entry six and seven are 0s.  This has two possible interpretations. First, it 
could indicate that the two logical clusters have never been allocated, that is, they have 
never been used by a file.  Second, it could mean that the file was deleted, and thus the 
clusters comprising the file were set for reallocation by placing 0s in the FAT entries.  We 
can determine which interpretation is correct by viewing the logical cluster six and seven 
with a hex editor. If these clusters contain any data, we know that the files were deleted. 
We could also look at the root directory to see if there are any files whose starting cluster 
is logical cluster six.  This would also be supporting evidence that the file was deleted.

Finally, FAT cluster numbers eight, nine, and ten indicate a small file comprising three 
clusters.

What happens when a file is deleted in a FAT file system? 

• The first character of the file’s name in the root directory is changed to e5h.  
• The FAT entries are set to 0.  

The clusters that compose the file are not touched. However, should the operating system 
decide that the FAT entries and corresponding clusters are needed, say, to save a new file, 

42



DRAFT: NOT FOR DISTRIBUTION

then the clusters may be overwritten.  That is the reason we freeze the computer: there is 
the potential for deleted files of possible evidentiary value to be overwritten by the operat
ing system.

Although experiments we have conducted have varied in the exact details that occur, simi
lar operations occur when files are deleted under most, if not all file systems, including 
NTFS, UNIX, and Linux file systems (EXT2, Reiser, etc.), i.e., a file pointer is modified to 
indicate the file is deleted, the clusters used by the file are marked as available, with the ac
tual file contents remaining on the disk.

Unallocated Space Revisited

Revisiting Figure 23 above we see that there are two root directory entries whose names 
begin with an ‘e5’ (the hex section).  These files are at offset 2600h (?EAL.JPG) and offset 
2620h (?IDDEN.JPG).  This is the character that the operating system places in the first 
position of the files name to indicate that the file has been marked as deleted.  If we look at 
Figure 24 at offset 4200h (which happens to be logical cluster number two) we see that 
cluster still contains information located in unallocated space.  This is the deleted file ?
ATA.JPG.  We can (and will) recover this file a little later in the chapter.

Slack Space

Slack space is an interesting phenomenon that can hold a great deal of useful evidence. 
Recall that the smallest unit that can be allocated to a file is a cluster.  If a file is 1 byte in 
size, and the cluster size for a disk is 32,768 bytes (64 sectors per cluster), then the entire 
cluster will be reserved for the 1byte file.  Clearly this is a tremendous amount of wasted 
disk space.  On average, the last cluster of each file will only be half full, meaning each file 
will waste half a cluster.  Multiply the number of files on a hard drive by half the cluster 
size and you will see that there is a tremendous amount of wasted space on any hard drive. 
The larger the cluster size, the more wasted space.

Cluster size has an important implication for a forensic investigation: Larger cluster sizes 
mean more slack space.   To illustrate slack space, Figure 26 shows a single cluster com
posed  of 64 sectors.  Say we create a file composed of 20 characters.  Although the physi
cal size of this file is small (160 bytes) it’s logical size will be the size of the smallest allo
catable unit, which is 32,768 bytes.  This means that there are 32,608 bytes wasted (32,768 
– 160) in this cluster.  Those 32,608 bytes are file slack, i.e., slack space.

Figure 26.  Slack space illustration

43



DRAFT: NOT FOR DISTRIBUTION

File slack becomes most interesting when clusters containing data are reused.  Figure 27 il
lustrates this phenomenon.  Say a criminal creates a document that discusses his plans to 
bomb a building, and then deletes the document.  Later the criminal creates a grocery list, 
and the operating system happens to reuse part of the previously allocated clusters, as 
demonstrated in the bottom of Figure 27.  Part of the original bombing plans document still 
exists in file slack.  A logical analysis would not uncover the contents of slack space.  The 
reason is that when we open a file only the contents of the file, up until the endoffile 
marker, are retrieved by the operating system. We must conduct a physical analysis to find 
the contents of slack space contents.  

Figure 27.  Cluster reuse and slack space 

Recovering Deleted Files

As mentioned previously, the delete operation doesn’t remove the contents of the file from 
the media.  It only marks the entry in the file table as deleted, and the clusters previously 
used for the file are marked as available.  All of the metadata in the root directory entry re
main; including modified, accessed, and created times, attributes, file size, and so on. 
Also, the deleted file’s FAT entries are marked as available by changing the FAT entries to 
0.  However, the data still remains on the disk. As long as the clusters are not overwritten, 
file contents can be recovered.  And even if some of the clusters were overwritten, there is 
still the possibility that some of the file contents may still remain.

To demonstrate the ease with which a deleted file can be recovered, a small file was creat
ed, saved to a floppy, and then deleted.  We created a forensic image of the floppy and then 
viewed the image with a hex viewer.  Note that in this demonstration we do not mount the 
image, but rather simply open the image in a hex viewer.

To recover the file we need two pieces of information: the starting cluster of the file, and 
the size of the file.  (It also helps if the file is not defragmented.)  We can find both pieces 
of information in the root directory entry for the file. 

44



DRAFT: NOT FOR DISTRIBUTION

Figure 28.  Root directory entry of deleted file

As shown in Figure 23 above, the root directory of a FAT12 formatted floppy disk begins 
at hex offset 2600h.  Note that, except for the first character, we know the remaining char
acters of the file name.  The starting cluster of the file is two, 0002h, as shown by the 
brackets on the left.  The size of the deleted file is indicated by the brackets on the right, 
7D7Bh.

(To calculate the starting cluster and file size we must perform a ‘byteswap’ operation to 
put the hex characters in their correct order. The byteswap for the starting cluster results in 
0002h or 2 in decimal.  The byteswap for the file size is 7D7Bh, or converted to decimal 
32,123 bytes.)

Once we know the starting cluster and file size we can use dd to recover the file.  Recall 
that the data area on a FAT formatted disk starts at logical cluster 2.  This translates to 
physical sector 33 on a FAT12 formatted disk. (The boot sector, two file allocation tables 
and the root directory comprise the first 32 sectors.)  The file size in hex is 7D7Bh, which 
is 32,123 bytes.  Recall that the default block size for dd is 512 bytes and each cluster of a 
FAT12 disk is equal to one sector.  To determine the number of clusters to extract we di
vide 32,123 by 512 = 62.74.  Since a file can’t use threequarters of a cluster we round up 
to 63, which means we may also capture any contents of slack space, should it exist.

# dd if=image.dd of=_at.jpg skip=33 count=63
  63+0 records in
  63+0 records out

The skip= argument specifies at which physical sector to begin, here, physical sector 33. 
The count= argument specifies the number of blocks (sectors) to extract.  The dd opera
tion succeeds, indicating it both read and wrote 63 records (blocks).  We can now open the 
‘_at.jpg’ file.  As we can see from the recovered graphic in Figure 29 we can now com
plete the file name, the first letter was a ‘c’ for cat.jpg.

Figure 29: Deleted file recovered manually with   dd  

Dealing with Formatted Drives

If deleting a file doesn’t remove all vestiges of a file from media, then surely formatting 
does, right?  Not exactly.  There are two types highlevel formatting in Windows: A quick 

45



DRAFT: NOT FOR DISTRIBUTION

format and a full format.  A quick format performs two operations: a) it zeros out the root 
directory entries, and b) zeros out the file allocation table entries.  The data area is not 
touched.  (This is a nice simple experiment we encourage the reader to conduct with a 
floppy disk).  A full format, in contrast, performs the same two operations as the quick 
format, and in addition it writes the hex character F6h in every sector of the data area. 
Thus, a disk that has been subjected to a full format will hold no recoverable data, except 
by experts using expensive procedures such as magnetic force microscopy (MFM).  

Given that information let us reconsider our manual recovery of a deleted file.  Can we 
recover the same file after a quick formatting of the disk?  Recall that a quick formatting 
complete overwrites the root directory, therefore, we no long know the starting cluster nor 
file size of the file.  We still have enough information available to us to recover files as 
long as we know the type of file we wish to recover.  

Say we are asked to recover all of the graphical files from a hard drive that has been quick 
formatted.  Given the file signatures (listed in Table 5 below), we can search for these file 
headers in the image.  Once we find the headers, which always occur at the beginning of a 
cluster, use the following steps to recover the files (only if the files are not fragmented).

1. Search for the file signature(s) within the forensic image.
2. When a file signature is found, note the hex offset. 
3. Convert the hex offset to physical sector number.
4. Use the dd command as above, using the physical sector number from step 3 above 

and a substantial count size.

File Type Signature
JPG FFh D8h FFh
BMP BM
GIF GIF8[79]a
PNG 89h 50h 4Eh 47h
TIFF 49h 49h 2Ah 00h

Table 5:   Graphical file signatures  

Given we are only guessing at the file size, what happens if we recover too many or too 
few clusters?  Our experiences suggest that it should not hurt to recover more clusters than 
allocated to a file.  Most of the time when we have recovered too little of the file, it is 
obvious.  For instance, we conducted an experiment to the file recovery above.  We used 
the commands (below) to recover too few (50) and too many (100) clusters, and then 
viewed the resulting files to determine the difference.

# dd if=image.dd of=small.jpg skip=33 count=50
# dd if=image.dd of=small.jpg skip=33 count=100

Figure 30 shows the results of recovering too few clusters.  Note that part of the image is 
missing, the result of recovering too few clusters from the image.  We can correct this by 
rerunning the command and increasing our count value to recover more clusters.  

Recovering too many clusters resulted in the same image as shown in Figure 29 for recov
ering too many clusters.  This is only a single example, and there may be a differences de
pending upon the type of file recovered.

46



DRAFT: NOT FOR DISTRIBUTION

Figure 30.  Manual recovery of too few clusters

Behavioral Timelines: What Happened and When?

Sometimes investigators must create a time line of computer activity based upon file infor
mation and other available evidence to determine the sequence of activities occurring dur
ing a particular time frame.  Examples of questions to be addressed through a timeline in
clude:

• What files were changed?  This can be answered thorough the creation of a time 
line based upon MAC times – modified, access, creation times – described later.

• How were the files changed?  Deleting existing files, adding malicious code such 
as rootkits, or replacing old files with Trojaned versions can change the system. 
The latter is common, for example, with UNIX systems, where ps and netstat bina
ries are replaced with versions that will not report evidence of suspicious activity.

• Can the deleted files and/or other evidence be restored?  

Every computer file on a Windowsbased file system (FATbased or NTFS) has associated 
with it three times: the time the file was created on the current volume (created or ctime); 
the time the file was last modified (modified or mtime); and the time the file was last ac
cessed (accessed or atime).  (Linux/UNIX file systems do not have a created time but a 
‘changed’ time. Additionally, Linux EXT2 file system has a deleted time.) These times 
provide information regarding the events that occurred on a computer, allowing the investi
gator to create a scenario that explains a user’s or intruder’s activities.   

From within Windows the MAC times can be accessed by right clicking on the file and se
lecting properties as demonstrated in Figures 31 and 32.  A file residing on an NTFS vol
ume in Figure 31 was copied to another volume formatted FAT32, Figure 32.  Note the 
modified times are the same.  The created times are different because the created times 
changed when a file is copied to a new volume.  Also, FAT32 only keeps track of last date 
accessed date, not the time last access.   (The reader should also note that we can determine 
that the volumes use different cluster sizes by looking at the “Size on disk” property.)

47



DRAFT: NOT FOR DISTRIBUTION

 

Figure 31: MAC times under NTFS                 

Figure 32. MAC times under FAT32   

At the DOS command prompt, the dir command displays the files last modification time 
and date.  To view the created times of all files in a directory, and to sort the file by date, 
use the command: 

C:\> dir <directory name>/* /tc /od.

48



DRAFT: NOT FOR DISTRIBUTION

To view by access times and sort by date, use: 

C:\> dir <directory name>/* /ta /od.

To view by modification times and sort by date, use: 

C:\> dir <directory name>/* /tw /od.

The command’s output is a listing of files within directory sorted by date.  Unfortunately, 
this formatting does not allow one to easily determine the activities that occurred on the 
computer.  

We have found the best way to create a timeline is to use tools from the open source foren
sic toolkit Sleuthkit (www.sleuthkit.org).  To illustrate the use of MAC times line, say we 
wanted to know what files had been created on a system since October 9, 2003.  We ran 
two tools from Sleuthkit, macrobber and mactime against a running computer.   We ran 
the command from a Linux box that was connected to the Windows system using a Samba 
share. 

# macrobber /mnt/fred/desktop/ > /evidence/fred.body

# mactime b /evidence/whammo.body > /evidence/fred.mac

The macrobber command extracts all of the time and date information from the files, and 
the mactime command then processes that information by sorting it by date and time and 
putting the information into a human readable timeline.   Here is a small portion of the re
sults:

[thousands  of lines deleted for the sake of brevity]

Sun Nov 16 2003 11:42:52 530432 ..c /desktop/chapter/cforensics4.doc
Sun Nov 16 2003 11:44:08 530432 m.. /desktop/chapter/cforensics4.doc
Thu Nov 20 2003 17:45:37   4096 ..c /desktop/chapter
Fri Nov 21 2003 09:26:24 475136 ..c /desktop/chapter/cforensics5.doc
Fri Nov 21 2003 09:36:54 475136 m.. /desktop/chapter/cforensics5.doc
Fri Nov 21 2003 09:37:04 475136 ..c /desktop/chapter/cforensics6.doc
                         474624 ..c /desktop/chapter/~WRL0002.tmp
Fri Nov 21 2003 09:42:30 474624 m.. /desktop/chapter/~WRL0002.tmp
Sat Nov 22 2003 20:05:41  79653 m.c /desktop/vmware_drv.o
Sat Nov 22 2003 20:18:50  30158 ..c /desktop/linux_forensics.pdf
Sat Nov 22 2003 20:18:51  30158 m.. /desktop/linux_forensics.pdf
Sat Nov 22 2003 20:18:55  64687 ..c /desktop/SMART Forensics.pdf
Sat Nov 22 2003 20:18:58  64687 m.. /desktop/SMART Forensics.pdf

[Hundreds of lines deleted for the sake of brevity]

(Some of the information from the timeline, including the master file table number, file 
permissions, and links, was been deleted for brevity’s sake).  

After the date, time, and size (in kilobytes) fields comes a three character field that con
tains an indication as to whether the associated time is an m, a, or ctime, or combination 
thereof.  Note that the MAC changes are organized by date and time.  The first line dis
plays the 4th version of this chapter (cforensics4.doc), and is a created time (note the 
‘..c’).  The next line is the modified time (‘m..’) for the same file indicating that the file 

49



DRAFT: NOT FOR DISTRIBUTION

was last saved a couple of minutes after it was created.  Note that the last access time for 
that file is not displayed because it was last accessed after November 22, and therefore 
doesn’t fall within the timeline.  Each file will have three times in the timeline.

From the timeline above we can derive several interesting facts.  First, the file cforensics6.
doc was created on Friday November 21 at 9:37AM.  Note that at the same time the Word 
created a temporary file.  Four minutes later, Word updated the modified time on the tem
porary file.   Where is the modified and accessed time for cforensics6.doc?  They come lat
er in the timeline and are not displayed.  

How are timelines used in computer forensics?  MAC times can be used to verify or dis
pute a use’s contention of whether the user created, modified, or accessed a file on a partic
ular date and time.  For example, if an employee’s Temporary Internet Folders contained 
pornographic pictures, and the access times on these files coincided with the employee’s 
work schedule, we have evidence that disputes the employee’s contention that his Internet 
surfing habits do not include surfing for porn. (Of course, we have stronger evidence if the 
source computer system is running a secure version of Windows such as NT, 2000, or XP, 
which has separate personal directories for each user.)

Collecting Evidence from Live Systems

Thus far we have worked with a subject’s computer, running Windows, which has been 
powereddown and disconnected from a network.  In some circumstances it may be diffi
cult or impossible to powerdown and isolate a computer from a network.  For instance, if 
a company’s only ecommerce server was attacked, management may refuse to isolate the 
machine because might cost the company more in lost revenue than the attack (Mandia, 
Prosise & Pepe,  2003; Casey & Seglem, 2002).  In this situation the investigator may be 
forced to work on a live system.  This presents a problem because live systems are in a 
constant state of change, thus complicating the collection of evidence and investigation as 
a whole.  Because the system is constantly changing we need to collect any evidence be
fore it is changed, deleted, or overwritten.  Not all evidence is subject to change in the 
same timeframe, however.  Some evidence may be relatively stable, such as evidence on 
CDs or floppies, whereas other evidence may be ephemeral, such as the contents of RAM. 
These examples demonstrate that computer evidence may have different levels of volatili
ty, which suggests that the investigator should prioritize evidence collection procedures by 
collection the most volatile information first.

Farmer & Venema (1999) proposed a volatility taxonomy, i.e., a measure of the likelihood 
of change to digital information on a running computer systems.  From most to least 
volatile include:

• Process Register
• Virtual and physical memory  
• Network state   
• Running processes   
• Disks, floppies, tapes   
• CDROM, paper printouts

There is a correlation between the difficulty of collecting untainted evidence and its 
volatility.  It is not impossible – as far we know – to collect the contents of registers with

50



DRAFT: NOT FOR DISTRIBUTION

out changing them. In contrast, printed materials and CDROMS are fairly permanent and 
easy to collect without fear of contamination.  

Farmer & Venema (1999) proposed an analogy between Heisenberg’s uncertainty princi
ple and the difficulty of working on live systems.  Heisenberg’s Uncertainty Principle 
states that attempting to measure both the location and momentum of an atomic particle af
fects the other; therefore, one can never produce an accurate measure of both at the same 
time. Similarly, attempts to collect evidence from a live system will change the contents of 
the system. This principle is demonstrated below. 

(We are assuming the liverunning server in our subsequent demonstrations is running 
some version of Linux.)

On Linux systems the file kcore (see Figure 34), located in under the /proc directory, is a 
virtual file that maps to physical memory (RAM) of the system. The file can be examined 
using a debugger, or the strings command can be used to extract the human readable 
text from the file.

Similarly /dev/mem is a logical file associated with physical memory, and /dev/kmem is as
sociated with kernel virtual memory (Kruse & Heiser, 2002).  One may access the contents 
of physical and kernel memory through /dev/mem and /dev/kmem, respectively.  

To illustrate how a simple procedure can change a running system we searched for the 
term ‘Heisenberg Uncertainty Principle’ within  /proc/kcore.  (Note that it is highly unlike
ly that this term would have been in physical memory prior to searching for the term.) The 
output of the search (below) shows that the command we used to search for the term shows 
up, in various formats, several times, indicating that by attempting to collect the evidence 
we have changed the system.

simba:~ # strings /proc/kcore | grep 'Heisenberg Uncertainty Principle'

[everything from here down are the results of the search]
'Heisenberg Uncertainty Principle'
grep 'Heisenberg Uncertainty Principle'
grep 'Heisenberg Uncertainty Principle'
strings /proc/kcore | grep 'Heisenberg Uncertainty Principle'
strings /proc/kcore | grep 'Heisenberg Uncertainty Principle'
strings /proc/kcore | grep 'Heisenberg Uncertainty Principle'
strings /proc/kcore | grep 'Heisenberg Uncertainty Principle'
'Heisenberg Uncertainty Principle'
strings /proc/kcore | grep 'Heisenberg Uncertainty Principle'
simba:~ # strings /proc/kcore | grep 'Heisenberg Uncertainty Principle'
simba:~ # strings /proc/kcore | grep 'Heisenberg Uncertainty Principle
Heisenberg Uncertainty Principle
Heisenberg Uncertainty Principle
Heisenberg Uncertainty Principle

We found 14 occurrences of the term ‘Heisenberg Uncertainty Principle’ within physical 
memory.  This small experiment underscores the susceptibility of contaminating a running 
computer system through even the simplest interaction.  Thus care should be taken to mini
mize contamination when attempting to recover evidence from a live system.  We can do 
this by having an incident response plan for dealing with live systems, including pre-writ
ten scripts that can be run from a CD or floppy to minimize interacting with the system 

51



DRAFT: NOT FOR DISTRIBUTION

(e.g., because an typing error was made at the command line, requiring that the command 
be retyped, a common occurrence under stressful conditions).

Collecting Volatile Evidence

Time is of the essence when collecting evidence from a running computer system.  As dis
cussed above, volatile sources of evidence are purged after a brief period of time.  Volatile 
and important sources of evidence on live systems, and the commands used to capture the 
evidence, include:

• Running processes (ps or the /proc file system)
• Active network connections (netstat)
• ARP cache (arp)
• List of open files (lsof)
• Virtual and physical memory (/dev/mem, /dev/kmem)

Gathering volatile data is more easily accomplished on file systems where everything is a 
file, which includes Linux, UNIX, and NTFS file systems.   For example, all running pro
cesses on a Linux system are written out to disk the proc file system in the /proc directory. 
Figure 33 is truncated example that illustrates the running processes on a Linux system 
(using the ps aux command), and the respective /proc file system in Figure 34. For each 
process running in memory (identified by the numbers under the column labeled PID in 
Figure 33) there is a corresponding directory under the /proc file system in Figure 34.  

Figure 33. Process list from running Linux system 

52



DRAFT: NOT FOR DISTRIBUTION

Figure 34. Associated /proc file system 

The /sbin/arp v command displays the contents of the ARP (address resolution protocol) 
cache. The example in Figure 35 illustrates that the ARP cache on this computer has two 
MAC addresses under the label titled HWaddress. The ARP cache holds MAC addresses 
(media access control addresses, i.e., the hardware addresses of the network interface 
cards, not to be confused with MAC times) of computers on the same subnet that have 
been recently communicating with the computer under investigation. These addresses are 
purged every so often, thus it is important to gather this information quickly.

Figure 35.  ARP output

The netstat command displays network connections and listening ports.  Figure 36 displays 
a portion of the results of running netstat. Note there several established connections (un
der the “State” heading).  The value “LISTEN” under the State heading indicates whether a 
port is open.  Here we see we have three open TCP ports: port 22 (secure shell, SSH), net
bios (139) and CIFS (445), the latter two of which are used with Samba (a service that sup
ports connections between my Linux and Windows machines).    

53



DRAFT: NOT FOR DISTRIBUTION

Figure 36.  View network connections and open ports with   netstat  

Log Files as Digital Evidence

Log files can be very important sources of forensic evidence. A server’s log files will con
tain information about various system resources, processes, and user activities.  Protocol 
analyzers, sniffers, SMTP, DHCP, FTP, and WWW servers, routers, firewalls, and almost 
any system or userdriven activity can be collected in a log file.  However, if the systems 
administrator has not enabled logging, then the evidence necessary to associate an intruder 
with an incident may not exist. Unfortunately, knowledgeable intruders and criminals 
know this, and one of the first orders of business is to destroy or alter log files to hide their 
activities.

A second important piece of information, and one sometimes overlooked, involves the sys
tem clock.  Anything logged to a file has an associated time and date stamp.  Time and 
date stamps enable the investigator to determine the sequence of events that transpired. 
System clocks, unless explicitly corrected on an occasional basis, can be off anywhere 
from several seconds to hours.  This can cause problems because any correlations between 
log files from different computers whose system clocks are different make it difficult or 
impossible to correlate events. A simple solution is to automatically synchronize clocks by 
having all systems run a daemon, such as the UNIX ntpd daemon, to occasionally synchro
nizes the system time and date with one a governmentsponsored (e.g., NIST, National In
stitute of Standards and Technology) atomic clock.  This is transparent to the user and 
takes little system resources.

Reducing the Potential for Evidence Contamination

If the computer system is on, files will be changing. If the computer system is connected to 
a network, files will be changing.  If we interact with the system, files will change.  This is 
a large, probably unsolvable problem: the need to interact with a live system and gather 
evidence will cause some form of contamination.  The best that can be done then is to limit 
contamination by limiting interactions with the system.  This can be done through planning 
prior to the incident.  It is important, for example, to have an incident response team and an 
incident response plan that can be executed once an incident has been identified.  One 
aspect of this plan is a predefined set of command scripts that can be executed to collect 
evidence from a running system. Ideally, these scripts should be run to limit the number of 
errors we are all susceptible to. (FIRE, Forensic Incident Response Environment is a 
Linuxbased bootable CD that includes scripts to recover system information for both 
Linux and Windows systems: fire.dmzs.com.  It is highly recommended).

Here is a simple example of running a predefined script to gather system information and 
transport it offsite via a network connection.  

# (ps aux; netstat –tupan; cat /var/log/message) | nc 192.168.1.1 4444

These commands collect the running processes (ps aux), list of open network connec
tions (netstat tupan), copies the log file messages (cat /var/log/messages) 
and uses netcat  to send them over a network connection to the local forensic machine. 
The number of commands that could be included within the processes is unlimited. This 

54



DRAFT: NOT FOR DISTRIBUTION

form of evidence collection is desirable because the script employed to capture the evi
dence can be preplanned and tested prior to its use in any real incident.  Make sure to test it 
on various forms of UNIX and Linux as some versions differ just enough that your com
mands may not work they way they are expected. For instance, on BSDstyle UNIX, ps 
ef is the command line equivalent of ps aux for capturing running system processes.

Commercial Tools

This chapter would not be complete without a brief mention some of the commercial tools 
available as of 2004.  Unfortunately space limitations guarantee that a discussion of the 
commercial forensics tools will be incomplete.  Realize that this is not an advertisement for 
any particular tool, but rather a pointer to existing tools that may warrant further 
examination by a serious investigator.

There are several Windowsbased forensics tools that are capable of performing all of the 
procedures we have covered in this chapter, and many we haven’t covered.  The two tools 
we discuss here are Guidance Software’s EnCase (Forensic or Enterprise Editions: 
www.guidancesoftware.com) and Accessdata’s Forensic Toolkit (part of the Ultimate 
Toolkit: www.accessdata.com).  We have had formal training and a good deal of 
experience with both EnCase and Forensic Toolkit; each has their strengths and 
weaknesses. Ideally an investigator should be trained and have access to several tools.  The 
reason is that it is often desirable to verify the findings from one tool with a different tool 
to ensure the validity and integrity of the findings.   

Forensic Toolkit and EnCase support: imaging; reading multiple file systems; reading 
multiple image formats; file viewing; advanced string searches; graphical/gallery views; 
email analysis; compressed file analysis; known file filters/hash analysis; bad file 
extension determination, electronic discovery; and numerous other capabilities.  We have 
included screenshots of EnCase (Figure 37) and Forensic Toolkit (Figure 38), displaying 
the results of a string search, to illustrate their graphical interface.

55

http://www.accessdata.com/


DRAFT: NOT FOR DISTRIBUTION

Figure 37. Guidance Software’s EnCase Interface

56



DRAFT: NOT FOR DISTRIBUTION

Figure 38: Accessdata’s Forensic Toolkit Interface

Other commercial tools available as of 2004, in alphabetical order, include:
• ARS Data’s SMART (runs under Linux): http://www.asrdata.com/tools/
• ILook Investigator (law enforcement only): http://www.ilookforensics.org/
• Maresware Forensic Tools: http://www.dmares.com/maresware
• New Technologies Forensic Suite: http://www.forensicsintl.com/tools.html
• Paraben Forensic Toolks: http://www.parabenforensics.com/

For the most uptodate information on the availability of commercial and opensource 
tools we suggest doing a Google search for ‘computer forensic tool.’

Conclusion

This chapter provided a technical introduction and overview of computer forensic proce
dures.  We attempted to cover the fundamental aspects of computer forensics methods and 
procedures, from acquiring and verifying the evidence through a complete logical and/or 
physical analysis.  Our demonstrations were designed to illustrate fundamental concepts 
rather than how a particular commercial tool could be used.  

Technology changes at an increasing pace, which creates several problems for investiga
tors.  For example, devices that may hold evidence have become more diverse, witness cell 
phones, personal digital assistants (PDAs) such as the Palm® handhelds and Compaq 

57

http://www.paraben-forensics.com/
http://www.forensics-intl.com/tools.html
http://www.dmares.com/maresware
http://www.ilook-forensics.org/
http://www.asrdata.com/tools/


DRAFT: NOT FOR DISTRIBUTION

IPAQ®, Blackberry® wireless email devices, compact flash and smart media, and so on. 
Investigators must have the necessary hardware and software to make a forensic image and 
analyze the information obtained from these diverse devices.  

Investigators are likely to encounter new types of media on a continual basis.  Therefore it 
is important that investigators be aware of these types of media, including any unique 
properties that may be important in understanding for the acquisition process.  Space limi
tations prevented us from describing the means of handling the more exotic types of evi
dence.  Nevertheless, the investigator must also have the necessary knowledge, techniques, 
and tools available to make the forensic images as well as perform thorough logical and 
physical analysis.  The best source for best practices on handling different types of media 
is the U.S. Secret Service’s Best Practices Guide for Seizing Electronic Evidence 
(http://www.secretservice.gov/electronic_evidence.shtml). 

Finally, storage technology is becoming exponentially larger and therefore more difficult 
and time consuming for investigators. For example, it is not uncommon to encounter per
sonal home computers with hard disks in the 200+ gigabyte range.  Moreover, terabyte
sized disk arrays are becoming more commonplace.  Numerous law enforcement and in
vestigators with whom we have spoken have encountered such devices.  This will create 
problems as the acquired images of a criminal investigation may outstrip an investigators 
ability to hold and preserve the evidence. Fortunately, technologies such as storage area 
networks, as they become less costly, may allow law enforcement and industry incident re
sponse teams to better deal with this problem.

58

http://www.secretservice.gov/electronic_evidence.shtml


DRAFT: NOT FOR DISTRIBUTION

Glossary

Allocated space – are the clusters allocated to a file and which are tracked by the file sys
tem.  

Allocation unit – the smallest unit of disk space that may be allocated to a file.  Varies by 
file system.

Bitstream copy – a bitforbit copy of digital evidence.

Block – UNIX terminology for an allocation unit (see allocation unit).

Cluster – Microsoft windows term for allocation unit (see allocation unit).

FAT – Acronym for File Allocation Table.  A common form of file system used with 
Microsoft Windows operating systems.  

File allocation table – Part of a FAT file system.  A singlylinked list of pointers to clusters 
comprising a file.

Forensic image – An exact, bitforbit copy of media.

Hash – Also known as a message digest, cryptographic hash, or oneway hash. A hash is a 
hex value, typically 128 or 160bit, that is unique to the contents of a file.    

Hash set – A list of hash values for a set of files.

Known files – Files known to be of no evidentiary value that can be discarded from an 
analysis. Usually identified through a hash analysis.
  
MD5 hash – A 128bit cryptographic hash algorithm created Ron Rivest of MIT.

Notable files – Files of known evidentiary value usually identified through a hash analysis.

NTFS – Microsoft New Technology File System.  

Metadata –A file’s metadata consists of all information about the file excluding its 
contents: File name, size, MAC times, starting cluster, permissions, attributes, etc.

Root directory – File table under FAT systems that holds file metadata.

Sector – Hardware unit of measure on a disk, typically 512 bytes.  Multiple sectors make 
up an allocation unit.   Individual sections of a disk track. 
 
Slack space – Disk space left over between the end of the data and the end of the last 
cluster of a file.  Slack space may contain residual information.

Unallocated space  the clusters not in use by a file.  Where deleted files reside.

59



DRAFT: NOT FOR DISTRIBUTION

Volume – Commonly, another name for a partition on a disk.  A hard drive may have up to 
four primary volumes or partitions.

Wipe – e.g., Forensic wipe.  To remove vestiges of information from media by writing a 
series of characters over the information.

Writeblock – a physical device that allows data to be read from a hard drive, but prevents 
data from being written to it.  Typically blocks interrupt 13h.

60



DRAFT: NOT FOR DISTRIBUTION

References

Bigelow, S. (2004).  Troubleshooting, maintaining & repairing PCs.  San Francisco: Mc
GrawHill.

Carrier, B. (2002b). Sleuthkit. www.sleuthkit.org 

Casey, E. (2001).  Digital Evidence and Computer Crime.  Academic Press. 

Casey, E. (2002).  Handbook of Computer Crime Investigation: Forensic Tools and Tech
nology.  Academic Press.

Craiger, J.P. (May 2004). Linux: Portable forensics Toolkit. Presentation accepted for the 
26th Annual Department of Energy Computer Security Training Conference.  St. Louis, 
MO.

Craiger, J.P. & Nicole, A. (Sept, 2002). An applied course in network forensics.  Presenta
tion for the Workshop for Dependable and Secure Systems. University of Idaho, Moscow, 
Idaho, Sept 2335.

Craiger, J.P., & Pollitt, M. (to appear).  Computer forensics and law enforcement.  In H. 
Bigdoli (Ed.), Handbook of Information Security.  John Wiley & Sons.

Dartmouth Institute for Security Technology Studies. (2002). Law Enforcement Tools And 
Technologies For Investigating Cyber Attacks: A National Needs Assessment. Dartmouth 
College.

Department of Energy.  (2003). First Responder’s Guide. Department of Energy
Computer Forensic Laboratory.

Dittrich, D. (2001). Basic Steps in Forensic Analysis of Unix Systems.
http://staff.washington.edu/dittrich/misc/forensics

Farmer, D., & Venema, W. (Sept., 2000).  Forensic computer analysis: An introduction. 
Dr. Dobb’s Journal.  

Brezinski, D., & Killalea, T. (February, 2002).  RFC 3227: Guidelines for Evidence Col
lection and Archiving.  http://rfc3227.x42.com/. Last visited: January 24, 2004.

Farmer, D. (Jan., 2001). Bring out your dead: The ins and outs of data recovery.  Dr. Dob
b’s Journal.

Farmer, D., & Venema, W. (April, 2001). Being prepared for intrusion.  Dr. Dobb’s Jour
nal.

Farmer, D. (Oct., 2000).  What are MACtimes? Dr. Dobb’s Journal.

Grance, T., Kent, K., Kim, B. (2004). National Institute of Standards and Technology 
Computer Security Incident Handling Guide.  NIST: Gaithersburg, MD.

61

http://rfc3227.x42.com/
http://staff.washington.edu/dittrich/misc/forensics
http://www.sleuthkit.org/


DRAFT: NOT FOR DISTRIBUTION

Heverly, R. & Wright, M.  (2004).  Cyberspace law and computer forensics.  In S. 
Bosworth and M.E. Kabay (Eds.), Computer Security Handbook.  New York: Wiley.

Jones, K. J. (2003a). Forensic Analysis of Internet Explorer Activity Files.  www.found
stone.com. 

Jones, K. J. (2003b). Forensic Analysis of Microsoft Inter Explorer Cookie Files.  www.
foundstone.com. 

Jones, K. J. (2003c). Forensic Analysis of Microsoft Windows Recycle Bin Records. 
www.foundstone.com. 

Jones, K. J., Shema, M., & Johnson, B.C. (2002).  Antihacker Toolkit.  San Francisco: Os
borne.

Kruse, W.G. III, & Heiser, J.G. (2001).  Computer Forensics: Incident Response Essen
tials. AddisonWesley.

Larson, T. (2002). The other side of civil discovery.  In E. Casey (Ed.), Handbook of Com
puter Crime Investigation.  Academic Press.

McNamara, J. (2003).  Secrets of computer espionage.  New York: Wiley.

Mohay, G., Anderson, A., Collie, B., De Vel, O., & McKemmish, R. (2003).  Computer 
and Intrusion Forensics.  Norwood, MA: Artech.

Morris, J. (Janurary 28, 2003).  Forensics on the Windows Platform, Part One.  www.secu
rityfocus.com/printable/infocus/1661

Morris, J. (February 11, 2003).  Forensics on the Windows Platform, Part Two.  www.se
curityfocus.com/printable/infocus/1665 

Mueller, S. (2003).  Upgrading and repairing PCs.  New York: Que.

Nelson, B., Phillips, A., Enfinger, F., & Steuart, C. (2004).  Guide to Computer Forensics 
And Investigations.  Boston: Thomson.

Parker, D. (1998). Fighting Computer Crime.  New York: Wiley.

Prosise, K, Mandia, K., & Pepe, M. (2003).   Incident Response: Investigating Computer 
Crime. San Francisco: McGrawHill.

Rivest, R. (1992). The MD5 MessageDigest Algorithm. 
http://theory.lcs.mit.edu/~rivest/rfc1321.txt.  Last visited 12/23/03.

Sammes, T., & Jenkinson, B. (2000).  Forensic Computing: A Practitioner’s Guide. Lon
don: Springer Verlag.

Schulz, E.E., & Shumway, R. (2002).   Incident Response: A Strategic Guide to Handling 
System and Network Security Breaches.  New Riders. 

62

http://theory.lcs.mit.edu/~rivest/rfc1321.txt
http://www.securityfocus.com/printable/infocus/1665
http://www.securityfocus.com/printable/infocus/1665
http://www.securityfocus.com/printable/infocus/1661
http://www.securityfocus.com/printable/infocus/1661
http://www.foundstone.com/
http://www.foundstone.com/
http://www.foundstone.com/
http://www.foundstone.com/
http://www.foundstone.com/


DRAFT: NOT FOR DISTRIBUTION

Seglem, K. K. (2002).  Introduction to Digital Evidence Reconstruction using UNIX Sys
tems.  In E. Casey (Ed.), Handbook of Computer Crime Investigation. Academic Press.

Sheldon, B. (2002).  The forensic analysis of Window’s systems. In E.  Casey (Ed.), 
Handbook of Computer Crime Investigation.  Academic Press.

Stephenson, P. (2000).  Investigating ComputerRelated Crime.  Boca Raton, FL: CRC 
Press.

U.S. Department of Justice. (July, 2002.) Searching and Seizing Computers and Obtaining 
Electronic Evidence in Criminal Investigations. Computer Crime and Intellectual Property 
Section.  Criminal Division, United States Department of Justice. 
http://www.usdoj.gov/criminal/cybercrime/searching.html. Last visited January 14, 2004.

U.S. Secret Service. (2002). Best Practices Guide to Seizing Electronic Evidence, Version 
2.  http://www.cio.com/securitytools/BPGv2.pdf  Last visited: December 29, 2003.

Opensource forensics software.  http://www.opensourceforensics.org/tools/unix.html. 
Last visited Jan 7, 2004.

Author.  Location of Outlook Express Files Under Windows XP. http://www.attentionto
details.com/newslog/379locationoutlookexpressfileson.asp#a194

63

http://www.attention-to-details.com/newslog/379-location-outlook-express-files-on.asp#a194
http://www.attention-to-details.com/newslog/379-location-outlook-express-files-on.asp#a194
http://www.opensourceforensics.org/tools/unix.html
http://www.cio.com/securitytools/BPGv2.pdf
http://www.usdoj.gov/criminal/cybercrime/searching.html


DRAFT: NOT FOR DISTRIBUTION

Further Reading

Caloyannides, M.A.  (2002).  Computer Forensics and Privacy.  Artech House Computer 
Security Series.

Caloyannides, M.A.  (2003).  Desktop Witness.  Artech House Computer Security Series.

Carrier, B. (2002a). Autopsy forensic browser.  www.sleuthkit.org. Last visited January 1, 
2004.

Carvey, H. (September 5, 2002). Win2K First Responder's Guide. http://www.securityfo
cus.com/infocus/1624 

Casey, E., Larson, T., & Long, T.M. (2002).  Network analysis.  In E.  Casey (Ed.)., Hand
book of Computer Crime Investigation.  Academic Press.

Cheng, D. (Nov. 1, 2001). Freeware forensics tools for UNIX.  http://online.securityfocus.
com/infocus/1503 

Cooper, M., Northcutt, S., & Frederick, K. (2002).  Intrusion Signatures and  Analysis.  
New Riders.

Department of Energy. (2002). First Responders Guide. Department of Energy Computer 
Forensic Laboratory.

Furnell, S. (2002).  Cybercrime: Vandalizing the Information Society.  Upper Saddle River, 
NJ: PrenticeHall.

Grundy, B.J. (2002). The Law Enforcement Introduction to Linux: A Beginner's Guide. 
http://ohiohtcia.org.  Last visited 1/24/04.

Hardy, K., & Kreston, S. (2001). Using Analogy to Explain Computer Forensics:  
Techniques used to explain computer jargon to courtroom juries.  National District 
Attorney’s Association. www.ndaa.org. Last visited 12/28/03.

Lucas, J., & Moeller, B. (2004).  The Effective Incident Response Team.  Boston, MA: Ad
disonWesley.

Marcella, A. J. Jr., & Greenfield, R.S. (2002).  Cyber Forensics: A Field Manual for Col
lecting, Examining, and Preserving Evidence of Computer Crimes.

Nemeth, E., Snyder, G., Hein, T.R. (2003).  Linux administration handbook.  Upper Saddle 
River, NJ: Prentice Hall.

Northcutt, S., & Novak, J. (2001).  Network Intrusion Detection: An Analysts Handbook. 
New Riders.

Parker, D. (1998). Fighting Computer Crime.  New York: Wiley.

64

http://www.ndaa.org/
http://ohiohtcia.org/
http://online.securityfocus.com/infocus/1503
http://online.securityfocus.com/infocus/1503
http://www.securityfocus.com/infocus/1624
http://www.securityfocus.com/infocus/1624
http://www.sleuthkit.org/


DRAFT: NOT FOR DISTRIBUTION

Spitzner, L. (2001). Know Your Enemy: Revealing the Security Tools, Tactics, and Motives 
of the Blackhat Community.  Honeynet Project.

Stoll, C. (1988). Cuckoo’s Egg: Tracking a Spy through the Maze of Computer Espionage.  
New York: Pocket Books.

Tan, J. (2001).  Forensic Readiness.  @stake Research.  www.@stake.com.

Vacca, J.R., & Erbschloef, M. (2001).  Computer Forensics: Computer Crime Scene In
vestigation.  Charles River Press.

65

http://computer.forensics.procedures.10.doc/

	
	
	Computer Forensics Procedures and Methods
	Abstract
	Introduction
	Computer Forensics Tools 
	The Forensic Server


	Sound Computer Forensic Practice
	Arriving at the Scene: The Initial Response
	Creating a Forensic Image
	
	Verifying Image Integrity 
	Imaging over a Network
	Sterilizing the Forensic Media

	Analysis of a Forensic Image
	Drive Geometry
	Mounting the Image
	Reducing our Search Space
	Hash Analysis
	Signature Analysis

	Searching a Forensic Image
	Keyword Searches


	grep found instances of the terms marijuana, cocaine, and OxyContin in files contained on our forensic image.  Note that there are several different cases used in the spelling of the terms (e.g.., ‘Cocaine,’ ‘cocaine,’). A case sensitive search would have failed to find several instances of the keywords, therefore, it is usually best to include the –i flag if case does not matter.     
	Finding Files by Type
	Email Searches
	Email is ubiquitous, supplanting regular mail as a preferred form of communication for many.  Email can be a rich source of evidence for many types of investigations.  
	Web-based Email
	The Windows Swap File
	

	I know what you did with your computer last summer…
	Cookies
	Deleted Files and the INFO2 File
	Figure 16.  Contents of INFO2 file viewed in a spreadsheet 
	Of what use is the INFO2 file?  Even though its contents are deleted when the bin is emptied, we may be able to recover the contents from unallocated space during a physical analysis. We may even be able to recover the files that were emptied from the bin.  (We deal with the recovering of information from unallocated and slack space later in the chapter.)  Note that we are still able to extract important information from the INFO2 file concerning deleted files, including: a) the date and time the file was deleted, b) the drive on which the file was deleted, c) the files original path, and d) the files size.
	Application Residual Files
	
	
	UNICODE
	
	Print Spool Files

	Physical Analysis
	What Happens when a File is Deleted?
	Unallocated Space Revisited
	Slack Space
	Recovering Deleted Files
	Dealing with Formatted Drives

	Behavioral Timelines: What Happened and When?

	Collecting Evidence from Live Systems
	Collecting Volatile Evidence
	Log Files as Digital Evidence
	Reducing the Potential for Evidence Contamination

	Commercial Tools
	Figure 37. Guidance Software’s EnCase Interface
	Figure 38: Accessdata’s Forensic Toolkit Interface
	Other commercial tools available as of 2004, in alphabetical order, include:

	Conclusion
	Glossary
	Volume – Commonly, another name for a partition on a disk.  A hard drive may have up to four primary volumes or partitions.
	Wipe – e.g., Forensic wipe.  To remove vestiges of information from media by writing a series of characters over the information.
	Write-block – a physical device that allows data to be read from a hard drive, but prevents data from being written to it.  Typically blocks interrupt 13h.
	References
	Further Reading

